您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【高考调研】2016届高三理科数学一轮复习配套题组层级快练39
题组层级快练(三十九)1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项之和为()A.2n-1B.n·2n-nC.2n+1-nD.2n+1-n-2答案D解析记an=1+2+22+…+2n-1=2n-1,∴Sn=2·2n-12-1-n=2n+1-2-n.2.数列{an},{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10项之和为()A.13B.512C.12D.712答案B解析bn=1an=1n+1n+2=1n+1-1n+2,S10=b1+b2+b3+…+b10=12-13+13-14+14-15+…+111-112=12-112=512.3.已知数列{an}的通项公式是an=2n-12n,其前n项和Sn=32164,则项数n等于()A.13B.10C.9D.6答案D解析∵an=2n-12n=1-12n,∴Sn=n-(12+122+…+12n)=n-1+12n.而32164=5+164,∴n-1+12n=5+164.∴n=6.4.数列{(-1)n(2n-1)}的前2016项和S2016等于()A.-2016B.2016C.-2015D.2015答案B解析S2016=-1+3-5+7+…-(2×2015-1)+(2×2016-1)==2016.故选B.5.在数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a21+a22+a23+…+a2n等于()A.(3n-1)2B.12(9n-1)C.9n-1D.14(3n-1)答案B解析因为a1+a2+…+an=3n-1,所以a1+a2+…+an-1=3n-1-1(n≥2).则n≥2时,an=2·3n-1.当n=1时,a1=3-1=2,适合上式,所以an=2·3n-1(n∈N*).则数列{a2n}是首项为4,公比为9的等比数列,故选B.6.已知等差数列{an}的公差为d,且an≠0,d≠0,则1a1a2+1a2a3+…+1anan+1可化简为()A.nda1a1+ndB.na1a1+ndC.da1a1+ndD.n+1a1[a1+n+1d]答案B解析∵1anan+1=1d(1an-1an+1),∴原式=1d(1a1-1a2+1a2-1a3+…+1an-1an+1)=1d(1a1-1an+1)=na1·an+1,选B.7.已知函数f(n)=n2,当n为正奇数时,-n2,当n为正偶数时,且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10200答案B解析由题意,得a1+a2+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.故选B.8.化简Sn=n+(n-1)×2+(n-2)×22+…+2×2n-2+2n-1的结果是()A.2n+1+2-n-2B.2n+1-n+2C.2n-n-2D.2n+1-n-2答案D解析Sn=n+(n-1)×2+(n-2)×22+…+2×2n-2+2n-1,①2Sn=n×2+(n-1)×22+…+3×2n-2+2×2n-1+2n,②②-①,得Sn=-n+2+22+…+2n-2+2n-1+2n=-n+21-2n1-2=2n+1-n-2.故选D.9.设函数f(x)=xm+ax的导数为f′(x)=2x+1,则数列{1fn}(n∈N*)的前n项和是()A.nn+1B.n+2n+1C.nn-1D.n+1n答案A解析∵f(x)=xm+ax的导数为f′(x)=mxm-1+a=2x+1,∴m=2,a=1.∴f(x)=x2+x=x(x+1).数列{1fn}(n∈N*)的前n项和为Sn=11×2+12×3+13×4+…+1nn+1=(1-12)+(12-13)+…+(1n-1n+1)=1-1n+1=nn+1.故选A.10.设直线nx+(n+1)y=2(n∈N*)与两坐标轴围成的三角形面积为Sn,则S1+S2+…+S2013的值为()A.20102011B.20112012C.20122013D.20132014答案D解析直线与x轴交于(2n,0),与y轴交于(0,2n+1),∴Sn=12·2n·2n+1=1nn+1=1n-1n+1.∴原式=(1-12)+(12-13)+…+(12013-12014)=1-12014=20132014.11.(1002-992)+(982-972)+…+(22-12)=____________.答案5050解析原式=100+99+98+97+…+2+1=100×100+12=5050.12.Sn=122-1+142-1+…+12n2-1=________.答案n2n+1解析通项an=12n2-1=12n-12n+1=12(12n-1-12n+1),∴Sn=12(1-13+13-15+…+12n-1-12n+1)=12(1-12n+1)=n2n+1.13.已知数列{an}的前n项和Sn=n2-6n,则{|an|}的前n项和Tn=________.答案6n-n21≤n≤3,n2-6n+18n3解析由Sn=n2-6n,得{an}是等差数列,且首项为-5,公差为2.∴an=-5+(n-1)×2=2n-7.∴n≤3时,an0;n3时,an0.∴Tn=6n-n21≤n≤3,n2-6n+18n3.14.在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则S100=________.答案2600解析由已知,得a1=1,a2=2,a3-a1=0,a4-a2=2,…,a99-a97=0,a100-a98=2.累加得a100+a99=98+3,同理得a98+a97=96+3,…,a2+a1=0+3,则a100+a99+a98+…+a2+a1=50×98+02+50×3=2600.15.数列{an}的前n项和为Sn,且a1=1,an+1=3Sn(n=1,2,3,…),则log4S10=________.答案9解析∵an+1=3Sn,∴an=3Sn-1(n≥2).两式相减,得an+1-an=3(Sn-Sn-1)=3an.∴an+1=4an,即an+1an=4.∴{an}从第2项起是公比为4的等比数列.当n=1时,a2=3S1=3,∴n≥2时,an=3·4n-2.S10=a1+a2+…+a10=1+3+3×4+3×42+…+3×48=1+3(1+4+…+48)=1+3×1-491-4=1+49-1=49.∴log4S10=log449=9.16.已知数列{an}为等比数列.Tn=na1+(n-1)a2+…+an,且T1=1,T2=4.(1)求{an}的通项公式;(2)求{Tn}的通项公式.答案(1)an=2n-1(2)Tn=2n+1-n-2解析(1)T1=a1=1,T2=2a1+a2=2+a2=4,∴a2=2.∴等比数列{an}的公比q=a2a1=2.∴an=2n-1.(2)方法一:Tn=n+(n-1)·2+(n-2)·22+…+1·2n-1,①2Tn=n·2+(n-1)22+(n-2)23+…+1·2n,②②-①,得Tn=-n+2+22+…+2n-1+2n=-n+21-2n1-2=-n+2n+1-2=2n+1-n-2.方法二:设Sn=a1+a2+…+an,∴Sn=1+2+…+2n-1=2n-1.∴Tn=na1+(n-1)a2+…+2an-1+an=a1+(a1+a2)+…+(a1+a2+…+an)=S1+S2+…+Sn=(2-1)+(22-1)+…+(2n-1)=(2+22+…+2n)-n=21-2n1-2-n=2n+1-n-2.17.(2014·大纲全国理)等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.答案(1)an=13-3n(2)Tn=n1010-3n思路(1)先求公差d,再求通项公式;(2)利用裂项相消法求和.解析(1)由a1=10,a2为整数,知等差数列{an}的公差d为整数.又Sn≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0.解得-103≤d≤-52.因此d=-3.所以数列{an}的通项公式为an=13-3n.(2)bn=113-3n10-3n=13110-3n-113-3n.于是Tn=b1+b2+…+bn=1317-110+14-17+…+110-3n-113-3n=13110-3n-110=n1010-3n.1.(2015·安徽安庆二模)在正项数列{an}中,a1=1,a5=16,对任意n∈N*,函数f(x)=a2n+1x-anan+2·(cosx+sinx)满足f′(0)=0.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和Sn.解析(1)求导得f′(x)=a2n+1-anan+2(-sinx+cosx),由f′(0)=0,可得a2n+1=anan+2.又an0,故数列{an}为等比数列,且公比q0.由a1=1,a5=16,得q4=16,q=2.所以通项公式an=2n-1(n∈N*).(2)Sn=1+2×2+3×22+…+n·2n-1,①2Sn=2+2×22+3×23+…+(n-1)·2n-1+n·2n.②①-②,得-Sn=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=2n-1-n·2n.∴Sn=(n-1)·2n+1.2.设数列{an}是公差大于0的等差数列,a3,a5分别是方程x2-14x+45=0的两个实根.(1)求数列{an}的通项公式;(2)设bn=an+12n+1,求数列{bn}的前n项和Tn.解析(1)因为方程x2-14x+45=0的两个根分别为5,9,所以由题意可知a3=5,a5=9,所以d=2,所以an=a3+(n-3)d=2n-1.(2)由(1)可知,bn=an+12n+1=n·12n,∴Tn=1×12+2×122+3×123+…+(n-1)×12n-1+n·12n.①∴12Tn=1×122+2×123+…+(n-1)×12n+n·12n+1.②①-②,得12Tn=12+122+123+…+12n-1+12n-n·12n+1=1-n+22n+1,所以Tn=2-n+22n.3.(2015·沧州七校联考)已知数列{an}的前n项和Sn,满足Sn=2an-2n(n∈N*).(1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求证:Tn≥12.解析(1)当n∈N*时,Sn=2an-2n,则当n≥2时,Sn-1=2an-1-2(n-1),两式相减,得an=2an-2an-1-2,即an=2an-1+2.∴an+2=2(an-1+2),∴an+2an-1+2=2.当n=1时,S1=2a1-2,则a1=2.∴{an+2}是以a1+2=4为首项,2为公比的等比数列.∴an+2=4·2n-1,∴an=2n+1-2.(2)证明:bn=log2(an+2)=log22n+1=n+1,∴bnan+2=n+12n+1,则Tn=222+323+…+n+12n+1,12Tn=223+324+…+n2n+1+n+12n+2,两式相减,得12Tn=222+123+124+…+12n+1-n+12n+2=14+141-12n1-12-n+12n+2=14+12-12n+1-n+12n+2=34-n+32n+2.∴Tn=32-n+32n+1.当n≥2时,Tn-Tn-1=-n+32n+1+n+22n=n+12n+10,∴{Tn}为递增数列,∴Tn≥T1=12.4.(2014·湖南十二校一联)已知数列{an}满足a1=1,a2=4,an
本文标题:【高考调研】2016届高三理科数学一轮复习配套题组层级快练39
链接地址:https://www.777doc.com/doc-2823497 .html