您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 分子生物学复习题总结
1一、简述DNA二级结构的特点双螺旋:DNA两条核苷酸链反向平行,以一定平行距离绕一个轴盘旋,形成一个右旋的双螺旋体。主链:磷酸和核苷酸排列在双螺旋外侧,彼此通过3-5磷酸二脂键相连接,形成主链。碱基配对:两条主链相对应的碱基按照AT和GC的配对原则由氢键相连,其中AT之间由两个氢键相连,GC之间由三个氢键相连。主链上碱基排列顺序储藏了遗传密码信息。结构尺寸和大小沟:DNA双螺旋分子直径为2nm,螺距为3.4nm,其中包括10个碱基对,碱基与碱基之间距离为0.34nm。螺旋外部有两个凹槽,根据大小分为大小沟,都能使蛋白质分子进入而与碱基相接触。二、核酸的变性DNA二级结构和三级结构受到物理化学因素的破坏而解体,但其一级结构核苷酸间共价键并不断裂。DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。变性时维持双螺旋稳定性的氢键断裂,碱基间的堆积力遭到破坏,但不涉及到其一级结构的改变。凡能破坏双螺旋稳定性的因素,如加热、极端的pH、有机试剂甲醇、乙醇、尿素及甲酰胺等,均可引起核酸分子变性。三、核酸的复性变性DNA在适合的条件下,又可使两条彼此分开的链重新缔合,按原来的碱基对配对形成双螺旋结构的过程。影响因素:DNA长度、序列、浓度四、核酸杂交2不同来源但具有同源性的两条DNA或RNA单链按照碱基配对原则结合在一起,这一过程就是杂交。杂交充分利用了核酸的变性和复性的特性,在DNA之间,DNA和RNA之间以及RNA之间均可进行,已成为分子生物学中重要的技术。五、DNA损伤、修复与基因突变三者的关系。由体内因素和环境因素原因导致DNA分子结构的任何异常改变都可看作是DNA损伤。细胞内还存在着长期进化中建立和发展起来的DNA修复保障系统,可针对DNA的损伤及时进行清除和修复。突变是指突变生物体内DNA结构的任何改变,主要指DNA分子中核苷酸序列的改变,包括替换、插入、重排、缺失等。这些改变能够引起生物体基因组结构及功能的改变。DNA损伤又称前突变,如果细胞不能将损伤完全修复,DNA不能恢复损伤前的结果形态,就形成不可逆的永久性、可遗传的改变,即发生了基因突变。因此三者之间的关系是,DNA损伤是突变的基础,而修复时阻止损伤变成突变的手段,突变时损伤无法修复造成的后果。六、DNA损伤主要的修复方式DNA修复可以在三个水平上进行:1、DNA复制前水平或非复制DNA的修复:如回复修复和切除修复。回复修复包括:酶学光修复(修复嘧啶二聚体),单链断裂重组(连接缺口5磷酸根和3羟基形成磷酸二酯键),嘌呤直接插入(修复无嘌呤位点)。切除修复包括:碱基切除修复和核苷酸切除3修复。步骤为识别、切除、修补、连接。DNA复制水平的修复,如错配修复。错配修复:将DNA复制过程中未得到校正的错配碱基进行二次校正。DNA复制水平后的修复,如重组修复及SOS修复。重组修复:利用含有正常遗传信息的同源姐妹DNA分子进行重组修复。这种修复常发生在修复后,可以对发生在DNA两条链同一部位的损伤或者是复制时双链分开没有互补链可利用时的损伤进行修复。SOS修复:SOS修复是指DNA受到严重损伤、细胞处于危急状态时所诱导的一种DNA修复方式,修复结果只是能维持基因组的完整性,提高细胞的生成率,但留下的错误较多,故又称为错误倾向修复,使细胞有较高的突变率。七、基因突变的分子机制碱基替换(substitution)即DNA分子中原有的一个碱基对被另一个碱基对取代,其中嘌呤与嘌呤、嘧啶与嘧啶之间的互变称为转换(transition),嘌呤与嘧啶之间的互变称为颠换(transversion)。碱基插入(insertion)在DNA序列中插入一个或几个额外的碱基对。碱基缺失(deletion)DNA分子中丢失一个碱基对或一段序列。重排(rearrangement)DNA位点的跨距离连接或指基因内部不同区域之间的跨越连接。八、依据受到影响的氨基酸顺序方面的变化,可将基因突变分为几类:4如果碱基的改变并未改变其编码的氨基酸及其序列,称为同义突变(synonymousmutation),这类突变是沉默突变,因为突变基因与未突变基因编码完全相同的蛋白,对基因组功能没有影响。如果碱基的改变引起了产物氨基酸顺序的改变,则称之为错义突变(missensemutation)。错义突变可以是致死性的,即致死突变(lethalmutation);也可能不影响蛋白质的活性,不表现出明显的性状变化,即中性突变(neutralmutation)。如果碱基的改变使一个编码氨基酸的密码子转变为一个终止密码子,使蛋白质的合成提前终止,称为无义突变(nonsensemutation)或链终止突变(chainterminationmutation)。如果终止密码子转变为一个编码氨基酸的密码子,造成终止信号的通读(readthrough),结果会产生过长的肽链,称之延长突变(elongationmutation)或通读突变(readthroughmutation)。对多数蛋白,短的延长片段不会影响其功能,但长的延长片段则有可能影响蛋白的折叠,造成活性的下降。有些基因突变的表型会通过第二次基因的突变得以恢复,这种第二次突变称为回复突变(backmutation或reversemutation);如果第二次突变不是通过“校正”第一次突变,而是通过抑制第一次突变效应的表现来恢复其表现型,则称之为抑制突变(suppressionmutation)。九、基因突变:突变是指突变生物体内DNA结构的任何改变,主要指DNA分子中核苷酸序列的改变,包括替换、插入、重排、缺失等。而这种改变没有被修复,就形成不可逆的永久性、可遗传的改变,即发生了基因突变。这些改变能够引起生物体基因组5结构及功能的改变。基因突变热点:无论是自发突变还是诱发突变,生物体特定基因中发生的突变并不是随机分布的,而是常常局限于一定的位点,这些位点发生突变的频率远远高于其它位点,称为突变热点(hotspot)。转座子:(transposon)是指能将自身插入基因组中一个在序列上无关的新位点的DNA序列。十、基因转录的基本特征1对于一个基因组,转录指发生于一部分基因,而且每个基因的转录都受到相对独立的控制。2转录是不对称的,基因转录只能以双链DNA分子中的一条链作为模板,而另一条链不能作模板。与mRNA有相同序列的成为有义链,另一条作为转录模板的称为模板链,也成为反义链。3基因转录的前体是4种核糖核酸三磷酸:ATP、GTP、CTP、UTP。4RNA的核苷酸序列是由DNA模板的核苷酸序列决定,即RNA的碱基与DNA碱基相互配对。5RNA以5-3方向延伸,新加入的核苷酸分子以5-三磷酸基团与RNA链的游离3-OH反应,RNA链与模板链方向相反。6与DNA聚合酶不同,RNA聚合酶在RNA合成的起始阶段不需要引物参与。7RNA参与合成起始的第一个核苷酸以其3-OH供延伸反应,因此新合成RNA的5端具有三磷酸结构,第一个参与的一半都是嘌呤核苷酸。8RNA的生物合成包括3个阶段:RNA聚合酶与DNA模板特6殊区域的结合与起始;RNA链延伸;合成终止与新生RNA链释出。十一、转录的过程:1转录起始:RNA聚合酶识别结合启动子(σ亚基);形成闭链复合物;形成开链复合物(17个碱基长度);RNA合成的起始。2转录的延长阶段:RNA合成方向沿5-3方向进行;RNA延伸过程中,要求在RNA合成位点处的模板DNA解链,产生一个长度为17+/-1碱基对的转录泡,合成的RNA暂时与DNA有义链形成约12bp的杂交链。随着RNA的延长,核心酶前面的DNA双螺旋不断解开,而后面的DNA重新回到解螺旋结果,同时RNA链也不断从RNA、DNA杂交体中分离出来;转录的忠实性要比复制低,但由于体内大多数基因是重复转录,再加上遗传密码子的简并性和错误合成不影响子代的性状,这样的错误率可以耐受。3转录的终止阶段:有两种形式,一种是ρ因子不依赖终止,一种是ρ因子依赖终止。ρ因子不依赖终止:新合成的RNA链一旦出现发夹样的茎环局部二级结构,RNA聚合停止作用,磷酸二酯酶停止形成,RNA合成终止。ρ因子依赖终止:ρ因子附着在新生RNA上,然后沿5-3方向朝RNA聚合酶移动,直到ρ因子接触到依赖ρ因子的终止位点暂停的RNA聚合酶,并与之反应,使新生的RNA链释放出来。十二、transcription:转录;是以DNA为模板,在RNA聚合酶作用下合成RNA的过程,是遗传信息从DNA向RNA传递的过程。是生物合成RNA的主要方式。转录子;由2个和2个以上紧密连锁,并共同转录在一种mRNA分子中的结构基因组成的复合单位。(只存在于原核生物)。以转录子为模板转录生成的mRNA,可7以同时编码2种或2种以上的蛋白质,并参与同一代谢途径中的反应。promoter:启动子;DNA分子上可与RNA聚合酶特异结合,使转录开始的一段DNA序列,启动子本身并不被转录。包括三个功能部位:识别部位(-35bp),结合部位(-10bp),起始部位(+1bp)。transcriptionfactor:转录因子;能直接和间接与调控元件起作用而影响基因转录的蛋白质因子。十三、试述蛋白质合成的三个阶段1肽链合成的起始:甲硫氨酰tRNA与mRNA结合到核蛋白体上,生成翻译起始复合物。原核生物:核蛋白体大小亚基分离;mRNA在小亚基定位结合;起始氨基酰-tRNA的结合;核蛋白体大亚基结合。真核生物:核蛋白体大小亚基分离;起始氨基酰-tRNA结合;mRNA在核蛋白体小亚基就位;核蛋白体大亚基结合。2肽链合成的延长:根据mRNA密码序列的指导,顺序添加的氨基酸,从N端向C端延伸肽链,直到合成终止的过程。肽链延长在核蛋白体上连续性循环式进行,又称为核蛋白体循环(ribosomalcycle),每次循环增加一个氨基酸,包括以下三步:进位(entrance):指根据mRNA下一组遗传密码指导,使相应氨基酰-tRNA进入核蛋白体A位。成肽(peptidebondformation):P位上的fMet-tRNAfMet的酰基与A位上aa-tRNA氨基成肽,A位成肽后,P位留下空载tRNA。转肽酶(transpeptidase)催化的肽键形成过程。转位(translocation):核糖体沿mRNA向前5-3移动一个密码子(3个核苷酸),其结果是脱酰tRNA从P位点排出,经E位点8离开核糖体,A位点的上新肽酰tRNA被移至P位点,核糖体又有空置A位点,可再次接受相应mRNA上密码子的氨酰tRNA分子。真核生物肽链合成的延长过程与原核基本相似,但有不同的反应体系和延长因子。另外,真核细胞核蛋白体没有E位,转位时卸载的tRNA直接从P位脱落。3肽链合成的终止:辨认终止密码子UAA、UAG、UGA;肽链从肽酰-tRNA水解出;mRNA从核蛋白体中分离及大小亚基的拆开。十四、遗传密码子及其特征⑴密码子的方向性:密码子的阅读方向及它们在mRNA上由起始信号到终止信号的排列方向均为5-3,与mRNA链合成时延伸方向相同。⑵密码子的简并性:一个氨基酸可以有几个不同的密码子,编码同一个氨基酸的一组密码子称为同义密码子。这种现象称为密码子的简并性。64-3=61个代表20种氨基酸,仅甲硫氨酸AUG、色氨酸UGG只有一个密码子。⑶密码子的连续性(读码)(无标点、无重叠):从正确起点开始至终止信号,密码子的排列是连续的。既不存在间隔(无标点),也无重叠。在mRNA分子上插入或删去一个碱基,会使该点以后的读码发生错误,称为移码,由这种情况引起的突变称为移码突变。⑷密码子的基本通用性(近于完全通用):对于高等、低等生物都适用,从病毒直到人类,细胞核DNA指导的蛋白质合成都使用同一套遗传密码。只有一个例外:真核生物线粒体DNA。动物细胞的线粒体DNA、植物细胞的叶绿体DNA,在翻译时,其密码阅读方式不同。9⑸起始密码子和终止密码子:64种密码子中,AUG为甲硫氨酸的密码子,又是肽链合成的起始密码子,UAA,UAG,UGA为终止密码子,不编码任何氨基酸,而成为肽链合成的终止部位(无义密码子
本文标题:分子生物学复习题总结
链接地址:https://www.777doc.com/doc-283538 .html