您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 会议纪要 > 《常微分方程》答案习题2.3
习题2.31、验证下列方程是恰当方程,并求出方程的解。1.0)2()(2dyyxdxyx解:1yM,xN=1.则xNyM所以此方程是恰当方程。凑微分,0)(22xdyydxydydxx得:Cyxyx23312.0)4()3(2dyxydxxy解:1yM,1xN.则xNyM.所以此方程为恰当方程。凑微分,0432ydydxxxdyydx得Cyxyx2323.0])(1[]1)([2222dyyxxydxxyxy解:3422)(2)()1)((2)(2yxxyyxyxyyxyyM3422)(2)()(2)(2yxxyyxyxxyxxxN则yNxM.因此此方程是恰当方程。xyxyxu1)(22(1)22)(1yxxyyu(2)对(1)做x的积分,则)(1)(22ydxxdxyxyu=yxy2)(lnyx(3)对(3)做y的积分,则dyydyxyyxyyu)()(2)()1(22=dyydyxyxy)()(222=22)(1yxxy则11)(21)(2)(1)(2222222yyxyxyxyyxxyyyxxydyydyydyyyln)11()(yxxyxyyxyxyyxyyyxyxyulnlnlnln222故此方程的通解为Cyxxyxyln4、0)2(3)23(22232dyyyxdxxxy解:xyyM12,xyxN12.xNyM.则此方程为恰当方程。凑微分,036462232dyyydyxdxxdxxy0)()()(33422xdxdyxd得:Cyyxx322435.(y1sinyx-2xycosxy+1)dx+(x1cosxy-2yxsinyx+21y)dy=0解:M=y1sinyx-2xycosxy+1N=x1cosxy-2yxsinyx+21yyM=-21ysinyx-3yxcosyx-21xcosxy+3xysinxyxN=-21ysinyx-3yxcosyx-21xcosxy+3xysinxy所以,yM=xN,故原方程为恰当方程因为y1sinyxdx-2xycosxydx+dx+x1cosxydy-2yxsinyxdy+21ydy=0d(-cosyx)+d(sinxy)+dx+d(-y1)=0所以,d(sinxy-cosyx+x-y1)=0故所求的解为sinxy-cosyx+x-y1=C求下列方程的解:6.2x(y2xe-1)dx+2xedy=0解:yM=2x2xe,xN=2x2xe所以,yM=xN,故原方程为恰当方程又2xy2xedx-2xdx+2xedy=0所以,d(y2xe-x2)=0故所求的解为y2xe-x2=C7.(ex+3y2)dx+2xydy=0解:exdx+3y2dx+2xydy=0exx2dx+3x2y2dx+2x3ydy=0所以,dex(x2-2x+2)+d(x3y2)=0即d[ex(x2-2x+2)+x3y2]=0故方程的解为ex(x2-2x+2)+x3y2=C8.2xydx+(x2+1)dy=0解:2xydx+x2dy+dy=0d(x2y)+dy=0即d(x2y+y)=0故方程的解为x2y+y=C9、dxyxxdyydx22解:两边同除以22yx得dxyxxdyydx22即,dxyxarctgd故方程的通解为cxyxtgarg10、03dyyxydx解:方程可化为:ydyyxdyydx2即,ydyyxd故方程的通解为:cyyx221即:cyyx22同时,y=0也是方程的解。11、01xdydxxyy解:方程可化为:dxxyxdyydx1dxxyxyd1即:dxxyxyd1故方程的通解为:cxxy1ln12、02xdydxxy解:方程可化为:dxxxdyydx2dxxyd故方程的通解为:xcxy即:xcxy13、02xdydxyx解:这里xNyxM,2,xNyMxNxNyM1方程有积分因子xedxx1两边乘以得:方程022dyxdxyxx是恰当方程故方程的通解为:cdydxxyxyxdxxyx22222cyxx333即:cyxx23314、0cossincosdyyxxdxyxyxx解:这里yxxNyxyxxMcos,sincos因为yxxyxxNyMsincos故方程的通解为:cdydxyxyxxyyxxdxyxyxxsincoscossincos即:cyxxsin15、odyxxxydxxxxycossinsincos解:这里xxxyNxxxyMcossin,sincosxNyM1MxNyM方程有积分因子:ydyee两边乘以得:方程0cossinsincosdyxxxyedxxxxyeyy为恰当方程故通解为:cdydxxxxyeyNdxxxxyeyysincossincos即:cxeyxeyycos1sin16、053243xdyydxyxdyydxx解:两边同乘以yx2得:05324352423ydyxdxyxydyxdxyx05324yxdyxd故方程的通解为:cyxyx532417、试导出方程0),(),(dyYXNdxYXM具有形为)(xy和)(yx的积分因子的充要条件。解:若方程具有)(yx为积分因子,xNyM)()(()(yx是连续可导)xNxNyMyM)(xNyMxNyM)1(令yxzdzdxzdzdx,dzdy.)(yMxNdzdNdzdM,)()(yMxNdzdNM,NMyMxNd,dzyxdz)(方程有积分因子)(yx的充要条件是:NMyMxN是yx的函数,此时,积分因子为dzzeyx)()(.)2(令yxzdzdyxzdzdx,dzdxyzdzdy)(yMxNdzdNydzdMx)()(yMxNdzdNyMxNyMxyMxNd此时的积分因子为dzNyMxyMxNexy)(18.设),(yxf及yf连续,试证方程0),(dxyxfdy为线性方程的充要条件是它有仅依赖于x的积分因子.证:必要性若该方程为线性方程,则有)()(xQyxPdxdy,此方程有积分因子dxxPex)()(,)(x只与x有关.充分性若该方程有只与x有关的积分因子)(x.则0),()()(dxyxfxdyx为恰当方程,从而dxxdyyxfx)()),()((,)()(xxyf,)()()()()()()()(xQyxPxQyxxxQdyxxf.其中)()()(xxxP.于是方程可化为0))()((dxxQyxPdy即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)g(u),\,试证方程yf(xy)dx+xg(xy)dy=0有积分因子u=(xy[f(xy)-g(xy)])1证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得:uyf(xy)dx+uxg(xy)dy=0则yuyf=uf+uyyf+yfyu=)(gfxyf+)(gfxyyfy-yf222)()(gfyxygxyyfxygfx=2)(gfxyyfgyygyf=2)(gfxyxyxyfgyxyxygf=2)(gfxyfgxygf而xuxg=ug+uxxg+xgxu=)(gfxyg+)(gfxyxgx-xg222)()(gfyxxgxyxfxygfy=2)(gfxyxxyxyfxgxxyxygxf=2)(gfxyfgxygf故yuyf=xuxg,所以u是方程得一个积分因子21.假设方程(2.43)中得函数M(x,y)N(x,y)满足关系xNyM=Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43)有积分因子u=exp(dxxf)(+dyyg)()证明:M(x,y)dx+N(x,y)dy=0即证xuNyuM)()(uyM+Myu=uxN+Nxuu(yM-xN)=Nxu-Myuu(yM-xN)=Nedyygdxxf)()(f(x)-Medyygdxxf)()(g(y)u(yM-xN)=edyygdxxf)()((Nf(x)-Mg(y))由已知条件上式恒成立,故原命题得证。22、求出伯努利方程的积分因子.解:已知伯努利方程为:;,oyyxQyxPdxdyn两边同乘以ny,令nyz,,11xQnzxPndxdz线性方程有积分因子:dxxPndxxPnee11,故原方程的积分因子为:dxxPndxxPnee11,证毕!23、设yx,是方程0,,dyyxNdxyxM的积分因子,从而求得可微函数yxU,,使得.NdyMdxdU试证yx,~也是方程0,,dyyxNdxyxM的积分因子的充要条件是,,~Uyx其中t是t的可微函数。证明:若u~,则NuMuyMyuMuyMyMuyM~又yMMuNuyMMuNuxNxNuxN~~即~为0,,dyyxNdxyxM的一个积分因子。24、设yxyx,,,21是方程0,,dyyxNdxyxM的两个积分因子,且21常数,求证c21(任意常数)是方程0,,dyyxNdxyxM的通解。证明:因为21,是方程0,,dyyxNdxyxM的积分因子所以oNdyMdxii2,1i为恰当方程即xNyMyMxNiii,2,1i下面只需证21的全微分沿方程恒为零事实上:021212212221122222212122222111221
本文标题:《常微分方程》答案习题2.3
链接地址:https://www.777doc.com/doc-2835603 .html