您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 《数学史》朱家生版+课后题目参考答案+第四章
11数本(1)班郭奇20110410471.作为世界四大文明古国之一,中国在公元前3000年至公元前1500年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还11数本(1)班郭奇2011041047给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。十进制是一种便捷的计数方法,而筹算是一种有效的工具,两者均是中国对世界的重大贡献。在同时代的各古代文明中,只有中国提出了十进制。当古希腊伟大学者阿基米德费尽心机地陈述如何用字母系统表示大数时,中国人已“持筹而算”这些大数,甚至“善计者不用筹策了”。没有看似平常的十进制,便很难顺利表述较大的数字。世界上目前仍有一些处于原始发展阶段的部族,对于十以上的数字只能统称为“多”,恐怕与没有适当的进位方法有关。用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。2、中国古代的数学教育可以称得上是世界上最早的,在《周礼》中关于数学教育的论述有哪些?它们都分别阐述了有关数学教育的那些观点?11数本(1)班郭奇2011041047答:我国的甲骨文中早就有了关于教育的记载。而记载周代教育制度的古老典籍《周礼.地官》中保氏一节称:“保氏掌谏王恶,而养国子以道,乃教之六艺:一曰五礼,二曰六乐,三曰五射,四曰五御,五曰六书,六曰九数。”其中礼、乐、射、御为大艺,书、数为小艺。(艺:才能、技能)前者为大学所授,后者乃小学所习。并称:“六年教之数,十年学书计。”可见,早在周代,国家就已把数学列为贵族子弟的必修课艺之一,从六岁或十岁就教数数及计算了。对数学教学如此重视,且以典制的形式规定下来,这在世界历史上是罕见的。3.在春秋战国时期产生了哪些重要的,可与古希腊相媲美的数学思想?试将他们做一比较.春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大.数学园地更是生机盎然,朝气勃勃.值得注意的是,人们在商代甲骨文和西周金文的基础上,逐渐懂得把字写在竹片(或木片)上,用绳子穿成册,这就是早期的书.写上字的竹片称为简,或竹简.春秋战国的大批数学成果,便是通过竹简流传下来的.(1)几何与逻辑《墨经》中讨论的几何概念可以看作数学理论研究在中国的最初尝试.《墨经》是以墨翟(约公元前490---前405)为首的墨家学派的11数本(1)班郭奇2011041047著作,包括光学、力学、逻辑学、几何学等各方面问题.它试图把形式逻辑用于几何研究,这是该书的显著特色.在这一点上,它同欧几里得(Euclid,约公元前330—前275)《几何原本》相似,一些几何定义也与《原本》中的定义等价.《墨经》中依次给出点、线、面等基本几何图形的定义,这些图形的名称分别为端、尺、区.在研究线的过程中,墨家明确给出“有穷”及“无穷”的定义:“或不容尺,有穷;莫不容尺,无穷也.”即:用线段去量一个区域,若能达到距边缘不足一线的程度,叫有穷;若永远达不到这种程度,叫无穷.(2)算术到公元前四、五世纪时,分数已在中国广泛应用了,有些分数还有特殊名称,如叫半,叫少半,叫大半.位值制和整数四则运算已被熟练掌握,《考工记》中还有简单的分数运算,例如(原书中用汉字表示).春秋战国时代,“九九歌”已是家喻户晓的常识了.《管子》等书中便记载着九九歌诀,顺序与今不同,是从“九九八十一”起,到“一一如一”止.至于改为“一一如一”到“九九八十一”的顺序,则是宋元时代的事情了.(3)对数学中“无限”的认识有限与无限的矛盾,是数学中的一对基本矛盾.对这一问题认识的不断深化,推动着古今数学的发展.战国时成书的《庄子》记载,惠施曾提出“至大无外,谓之大一;至小无内,谓之小一”的观点.其中“大一”、“小一”可理解为无穷大,无穷小.这段话的意思是:大11数本(1)班郭奇2011041047到没有外部,称为无穷大;小到没有内部,称为无穷小.书中“一尺之棰,日取其半,万世不竭”的著名命题,可以看作是对“小一”的发挥.一尺长的木棒,第一天取它的一半,第二天取剩下那一半的一半,如此不断地取下去,永远也取不完.即第一天取,第二天取,第n天取,不管n多大,总不为0,其中体现了物质无限可分的思想.(4)组合数学的萌芽组合数学虽是现代数学的分支,它的思想却可以追溯到遥远的古代.春秋时期成书的《易经》便含有组合数学的萌芽.《易经》是中国最古老的书籍之一,书中通过阴阳卦爻预言吉凶.“--”是阳爻,“--”是阴爻,合称“两仪”.每次取两个,按不同顺序排列,生成“四象”;每次取三个,生成八卦(图4.5);每次取六个,则生成六十四卦.四象、人卦与六十四卦的排列,相当于组合数学中的有重排列:从n种元素中每次取r个,共有nr种排列法.例如,在两种卦爻中每次取3个,共有23=8种排列,这就是八卦.(5)早期的数学工具---算筹与规、矩算筹即用于计算的小竹棍(也有木质、骨质或金属材料的算筹),它是中国人创造的计算工具.春秋战国时代,算筹的使用已相当普遍,书中多有记载,如“孟子持筹而算之”(《十发》),“善计者不用筹策”(《老子》),等等.1954年在长沙的一座战国楚墓中挖出一个竹筒,内装竹棍40根,长短一致,约12厘米,是为算筹之实物.4、《九章算术》的主要内容是什么?其具有世界意义的数学成就又11数本(1)班郭奇2011041047有哪些?答:全书内容丰富,且密切联系实际,《九章算术》全书共有246个应用题,基本上都是与生产实践、日常生活有联系的实际应用问题。这些问题分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。《九章算术》注重实际问题和长于计算的特点,对中国传统数学的发展有着极其深刻的影响。可以说,与西方数学的演绎推理相映生辉的具有中国特色的算法体系的形成即始于《九章算术》。《九章算术》成书以后,便成为中国传统数学的经典,特别是唐代以来,经官方认定该书成为“算经十书”中最重要的一部,成为后来的数学家们学习、研究和著述的依据。5.试阐述刘徽的主要数学成就.刘徽的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上11数本(1)班郭奇2011041047最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了割圆术,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、11数本(1)班郭奇2011041047并以数学证明为其联系纽带的理论体系。刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。6、球体积的计算常常被用来衡量各个国家和地区数学发展水平的一把尺子,中国数学家在这方面的成就是非常杰出的。试阐述从《九章算术》到刘徽、祖氏父子在这方面的工作与成就。答:《九章算术》第五章“商功”主要论述了各种立体图形的体积算法,其中包括柱、锥、台、球体等。刘徽一生不仅成就卓著,而且品格高尚。在学术研究中,他既不迷信古人,也不自命不凡,而是坚持实事求是,以理服人。为了说明少广章的“开立圆术”刘徽又引入一种新的立体:以正方体相邻的两个侧面为底分别作两次内切圆柱切割,剔除外部,剩下的内核部分刘徽称之为“牟合方盖”。他用截面法证明内切球与“牟合方盖”的体积之比为4,而明显可以看出“牟合方盖”的体积要比圆柱要小。显然,如果能求出牟合方盖的体积,球的体积就自然可以求出了,刘徽对于牟合方盖的体积如何求处,百思不得其解,故最后不得不“付之缺疑,以俟能言者”。由此我们可以看出刘徽学术研究中的严谨与谦逊的态度,也许正是这二者的结合,使得刘徽在数学研11数本(1)班郭奇2011041047究方面作出了举世瞩目的成就,给后人留下丰富的文化财富。7.宋元时期最杰出的数学家有哪些?试阐述他们的代表作和主要数学成就。中国古代数学在宋元时期达到繁荣的顶点,涌现了一大批卓有成就的数学家.其中秦九韶、李冶、杨辉和朱世杰成就最为突出,被誉为“宋元数学四大家”.秦九韶(公元1202-1261),字道古,安岳人.其父秦季栖,进士出身,官至上部郎中、秘书少监.秦九韶聪敏勤学.宋绍定四年(1231),秦九韶考中进士
本文标题:《数学史》朱家生版+课后题目参考答案+第四章
链接地址:https://www.777doc.com/doc-2846209 .html