您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > SiemensPLC及其通讯技术在炼钢电弧炉及精炼炉上应用
SiemensPLC及其通讯技术在炼钢电弧炉及精炼炉上应用1概述电弧炉以及精炼炉在运行过程中其产生的高次谐波及强电磁场所形成的强大干扰,是严重威胁控制和通讯系统安全运行的主要原因。50吨炼钢电弧炉的电炉变压器额定容量为31500KVA,二次额定电流可达到42KA以上,其冲击和短路电流有时可达到和超过100KA。强电磁场和电弧的弧光放电引起的宽带噪声干扰及高次谐波分量与闪变(电压波动),成为计算机及通讯网络,电子设备稳定和安全运行的主要问题。在方案设计和系统设计及PLC选型以及制造工艺设计时,都必须充分考虑和关注到系统所处的恶劣运行现场工业环境的抗扰问题。在为太钢集团公司第一炼钢厂设计的50吨炼钢电弧炉及60吨钢包精炼炉控制系统中?穴50吨电弧炉和60吨钢包精炼炉的系统总结构图略,可向作者索取?雪,两台电炉的控制系统全部采用SIEMENS公司的S7-300系列PLC及其通讯技术。经过现场调试和运行结果证明该系统运行状态良好,性能可靠稳定。2系统的总体设计2.1硬件结构的设计整个系统采用4台SIEMENSS7-315-2DPPLC主站分别完成对电弧炉炉体控制、电弧炉电极调节,钢包精炼炉炉体控制和钢包精炼炉电极调节。在四台PLC主站之间采用SIEMENS公司的CP-342通讯模块构成PROFIBUS-S7通讯网完成各主站间的数据通讯。电弧炉炉体和钢包精炼炉炉体控制PLC主站共下设6个ET200远程从站,通过SIEMENS公司工业现场总线PROFIBUS-DP完成主——从通讯。系统设计使用一台工程师站,两台操作员站。三台工业计算机中分别采用SIEMENS公司CP5412网卡通过PROFIBUS-S7数据通讯网络完成计算机与各PLC主站之间的数据通讯。操作员站的画面组态软件选用SIEMENS公司的WINCC完成用户二次软件的开发。炼钢电弧炉炉体控制PLC主站主要完成对35KV高压系统的合分闸操作及高压系统事故分闸的控制,对31500KVA电炉变压器及变压器油水冷却系统运行状态的监控和保护,并完成电炉水冷炉盖、水冷炉壁等水冷系统23个测温点水温变化情况的模拟量实时数据采集以及冷却水系统压力、流量等的实时数据采集监视和越限及事故报警。同时通过PROFIBUS-S7网向操作员站进行实时数据的传输,由人机界面完成监控数据的记录、显示和故障报警。炼钢电弧炉的各ET200远程从站分别设置在炉前操作室、炉后操作室、液压泵站和液压阀站以及炉门碳氧喷枪的操作站内。分别构成炉前的炉盖和炉体动作操作和控制炉前倾炉操作,三相立柱锁定和炉前电极升降操作及炉门钢水测温I/O。炉后倾炉及EBT出钢操作、出钢钢包车操作和修理平台的旋转操作I/O。液压泵站主、辅液压泵的切换和运行控制,对高压液罐和气罐的液位和压力控制、空气压缩机的控制、主液箱和回液箱的液位自动控制及液压介质自动温度控制的I/O,液压阀台的I/O及炉门碳氧喷枪三维动作的操作及控制I/O。钢包精炼炉炉体控制PLC主站的作用同炼钢电弧炉相似,ET200远程从站仅设置在钢包精炼炉的液压站内。用于控制炉内电弧功率的炼钢电弧炉和钢包精炼炉电极调节系统设计各采用一台SIEMENSS7-315-2DPPLC主站。主要承担输入炉内的三相电弧功率的实时自动控制,根据不同冶炼工艺和冶炼期自动修正功率配电曲线和控制参数,以满足冶炼工艺要求。设计采用独立设置的两套PLC主站作为电炉和精炼炉电极调节系统可以减轻电炉和精炼炉炉体控制PLC主站CPU的负担,缩短程序扫描周期,有利于提高实时系统相应的响应速度和调节精度。2.2控制软件的设计四台PLC主站的用户程序是在基于SIEMENS公司的SIMATICSTEP7BasisV5.0软件平台上完成硬件组态、地址和站址的分配以及电弧炉和钢包精炼炉用户程序的设计开发的,在主程序(OB1)中将各种控制功能和各PLC站点间的通讯数据分别编写在不同的子程序(功能块FB、DB、FC)中,其中35KV高压合分闸、事故高压分闸,模拟量信号的输入均充分考虑了现场工业运行环境的强干扰问题,在软件设计中采用了抗干扰措施。人机界面的画面组态采用SIEMENS公司的SIMATICWINCC作为二次用户程序开发的软件平台,在工程师站安装WINCC-RC用于开发,操作员站安装WINCC-RT用于运行,WINCC运行于WindowsNTV4.0操作系统平台之上,以增加系统运行安全和稳定性,并给用户将来建立工厂管理网带来方便。现场操作人员通过分别设置在电炉和精炼炉操作员站的人机界面监视整个系统各个主要参数的运行情况;这些参数包括:输入炉内的三相电弧电流,三相电弧电压,三相电弧功率,电能耗的实时显示和历史趋势显示。冷却水系统温度监测点的水温监测以及流量及压力的监测和超温越限报警。35KV高压系统过流、欠压监测。电炉变压器的各种故障报警信号监测和报警,变压器低压侧过电流和高压跳闸信号的监测。炉体状态显示及液压系统的工作状态监测。同时,在不同冶炼阶段炉内三相电弧工作电流的给定值、冶炼时间、35KV高压通电时间,钢水温度的显示以及各种报警参数的历史记录和打印报表的生成。2.3通讯网络的组态网络组态采用SIEMENS公司的SIMATICNET,NCMS7PROFIBUS组态软件完成PROFIBUSS7通讯网的网络组态。在工程师站、操作员站分别设计安装CP5412网卡,在四台PLC主站安装CP342-5通讯模块,通过SIEMENS公司的PROFIBUSS7通讯电缆完成工程师站、操作员站和分别分布在电弧炉及钢包精炼炉主控制室的四台PLC主站之间的通讯网络硬件组态。3抗干扰措施的设计和实施在电弧炉炼钢的工业环境中,切实有效的硬件和软件抗干扰措施的实施成为系统设计和工厂设计及设备制造和安装过程中必须谨慎考虑的非常主要的环节。根据现场运行实践证明,电炉变压器在高压合闸瞬间所产生的浪涌,大电流运行时变压器所产生的强磁场,炉内电弧以及大电流线路在电弧短路时所产生的强电磁场,电网的谐波分量等诸因素综合起来的干扰源可视为一个从低频到甚高频的宽带噪声源,其所产生的各种干扰都将严重威胁系统运行及通讯网络的安全和稳定。故而在设计中针对各种干扰的存在考虑了以下的抗干扰措施:3.1隔离电源PLC主站和远程从站的工作电源均通过带屏蔽的隔离变压器完成对PLC电源供电,使PLC与大功率电气设备的电位隔离开来,以避免供电线路带来的噪扰。3.2电源滤波器隔离变压器的二次侧采用电源滤波器以滤除和衰减以共模和串模形态出现的工频干扰。共模形态出现的干扰将沿地线被滤除,串模干扰则被旁路。3.3有源隔离端子现场引入的模拟量输入信号和输出信号采用有源隔离端子将由地环路引起的噪声隔离,切断通过现场引入的模拟量信号地环路中的噪声通道。3.4模拟量输入通道的滤波三相电弧电流、电弧电压等主要电气参数的模拟量采样信号输入通道在进入PLC模拟量通道前在经过有源隔离后再由有源滤波器抑制模拟量通道中的串模干扰,在保证有用信号不被衰减的情况下最大限度地将高频噪声衰减,提高通道的信噪比。有源滤波能确保通道信号的增益。3.5模拟量通道的屏蔽模拟量通道的输入信号传输导线设计采用耐高温的有屏蔽的双绞线电缆以降低辐射干扰和电磁耦合性干扰。3.6数字量输入通道的隔离PLC的数字量输入通道采用光电隔离模块,从强电场现场环境(如高压开关室的真空断路器柜)引入的数字量信号在其触点和模块间加设中间继电器对通道进行双重隔离,防在真空断路器合闸操作同时强干扰串入而引起真空断路器误分闸动作。3.7数字量输出通道的隔离PLC的数字量输出通道主要驱动交流和直流感性负载,大电流负载采用中间继电器过渡,所有通道均设计采用浪涌吸收和RC组件做为保护。3.8电磁屏蔽工程师站和操作员站采用钢壳机箱的工控机,系统中的电子设备亦采用屏蔽外壳,再置入控制柜台内形成与柜台外壳间绝缘的双重电磁屏蔽。PLC采用悬浮安置方式将金属安装底版与柜壳绝缘隔离。所有电子设备均采用独立引出的专用地线接地,柜台的外壳则接保护地。3.9电子设备的浮地供电电子设备的直流供电电源采用浮地供电,输入和输出通道直流供电电源各自独立。计算机采用在线式UPS电源供电,电子设备采用线性电源供电,其它直流负载采用开关电源供电。3.10通讯电缆的敷设两个物理层的通讯电缆采用SIEMENS公司的PROFIBUS通讯电缆(buscablesolid)?熏在敷设时单独金属穿管。电缆的屏蔽层通过电缆插头的金属外壳经PLC的通讯模块CP和DP的接口接入独立引出的专用地线接地。同时在电缆走向上注意避免与动力电缆平行,并尽可能远离电炉炉体和大电流线路。3.11地线电弧炉炉体外壳采用相对独立的接地线引出接地。电气设备的保护接地进入工厂接地网。计算机、PLC和通讯网络及电子设备的接地则进入独立的专用地线。浮地处理的电子设备的地线各自独立。3.12电气设备制造工艺的保证电气设备柜内的布局,柜内各种电缆和导线(动力、信号、通讯以及接地)的走向,屏蔽和接地的合理布置也是须在设计和设备制造过程中加以认真考虑的。3.13软件设计中的抗干扰处理合理设置PLC的硬件看门狗时间及采样中断时间。在程序设计中对数字量输入信号采用脉宽甄别、锁存、指令复执技术。在对缓变的模拟量信号进行运算处理之前采用滑动均值滤波等数字滤波技术措施。在PID调节过程中对干扰比较敏感的一是当偏差e较小时,易受影响,二是微分项易引起较大变动。前者用一阶及一阶滞后滤波处理,后者则用不完全微分型PID算法。设置合理的通讯波特率?熏包括PROFIBUS-S7和PROFIBUS-DP通讯物理层。4结语在系统的热负荷调试和以后的运行情况表明,在设计中只要充分注意和采用正确合理的抗干扰措施,在恶劣的工业环境中SIEMENSS7-300系列PLC(四台主站设计选型均为S7-315-2DP)及其PROFIBUS的S7和DP通讯网络的可靠稳定及经济安全运行是可以得到保证的。SIEMENS公司的SIMATICSTEP7BasisV5.0编程平台安装在工程师站。基于WindowsNT操作平台的支持下在系统运行过程中对各PLC主站程序的诊断、在线监控、修改和下载都比较方便和快捷。而符号名寻址方式使用户参照硬件原理图阅读理解程序变得简明容易,NCM、Configuration等组态工具以及PID、FuzzyControl++等软件开发工具包给设计编程人员减少了二次开发的工作量。PROFIBUSS7通讯网和DP现场总线结构的集散控制方式使得现场布线的大量简化成为可能,工程造价的降低以及运行维护的经济性,系统设计的灵活性将受到用户的认可和欢迎。参考文献[1]《实用计算机控制应用手册》,山东科学技术出版社(214026无锡塘南路65号无锡四方冶金设备工程公司)汤宇法王亚民(接第37页)二者完全相同。CIN的C源程序的函数原型由LabVIEW自动生成,用户只需在LabVIEW中将CIN的结点的入口与出口参数个数类型确定即可。在这个通讯软件中,为了提高CPU的利用率,我们采用中断方式。在ADAM5510的通讯协议仿真成ADAM5000/485的通讯程序中,其中命令/响应协议用到中断方式图略。5结束语ADAM5510可编程控制器与其它的PLC的不同之处,在于其它PLC一般只能作为控制量,而ADAM5510既能作控制量又能作模拟量,与上位机进行通讯可以方便地采集数据,以便上位机对数据进行处理、分析。ADAM5510的通讯设计方法可以移植到其他的上位机软件。
本文标题:SiemensPLC及其通讯技术在炼钢电弧炉及精炼炉上应用
链接地址:https://www.777doc.com/doc-2858502 .html