您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 理论文章 > ]新人教版九年级数学上册第二十三章旋转方程全章教案
--1--第二十三章旋转单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、思考,--2--老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1图形的旋转3课时23.2中心对称4课时23.3课题学习;图案设计1课时教学活动、习题课、小结2课时23.1图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.--3--通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一--4--固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.三、巩固练习教材P65练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.解:面积不变.理由:设任转一角度,如图所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`--5--∴S四边形OE`BD`=S正方形OEBD=14五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材P66复习巩固1、2、3.2.《同步练习》一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为().A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70°B.80°C.60°D.50°(1)(2)(3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.--6--(4)(5)(6)(7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B2.C3.B二、1.旋转旋转中心旋转角2.A45°3.点A60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.--7--23.1图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般--8--性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什
本文标题:]新人教版九年级数学上册第二十三章旋转方程全章教案
链接地址:https://www.777doc.com/doc-2861213 .html