您好,欢迎访问三七文档
数据的分析导学案1/11龙井第四中学八年级数学导学案组姓名编号2001课题:平均数(一)一、自学教材,明确目标:1、理解数据的权和加权平均数的概念2、掌握加权平均数的计算方法3、通过本节课的学习,还应理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。二、研读教材,解读目标:1、分析讲解111页—113页问题1、例1、例2、进一步理解权的意义,掌握加权平均数的计算方法。2、解释112页“思考”,理解权的意义;理解加权平均数的意义,掌握加权平均数的计算方法。3、分析讲解113页练习三、巩固训练,达成目标:1、已知数据2,3,4,5,6,x的平均数是4,则x的值是.2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中9环,b次打中10环,则这个人平均每次中靶环。4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:应聘者笔试面试实习甲858390乙808592试判断谁会被公司录取,为什么?四、课后练习1、数学期末总评成绩由作业分数、课堂参与分数、期末分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与95分,则它的总评成绩为.2、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?数据的分析导学案2/113、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80757188小兵76806890试比较两人谁的成绩好?4、(公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁?五、课堂小结六、课后反思数据的分析导学案3/11龙井第四中学八年级数学导学案组姓名编号2002课题:平均数(二)1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题二、研读教材,解读目标:1、分析讲解114页探究与思考,2、分析讲解115页例33、处理教材115、116页练习三、巩固训练,达成目标:1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间2、某班40名学生身高情况如下图,请计算该班学生平均身高。所用时间t(分钟)人数0<t≤10410<t≤20620<t≤301430<t≤401340<t≤50950<t≤604165105身高(c1851751551451520610204人数(人)数据的分析导学案4/113、小明家鱼塘中养了某种鱼2000条,现准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从中打捞三次,得到如下表所示的数据:鱼的条数平均每条鱼的质量第一次捕捞151.6kg第二次捕捞152.0kg第三次捕捞101.8kg鱼塘中这种鱼平均每条的质量为千克,鱼塘中所有这些鱼的总质量为千克,若将这些鱼不分大小,按每千克7.5元的价格出售,则小明家约收入元。四、课后练习:1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表部门ABCDEFG人数1124225每人创得利润2052.521.51.51.2该公司每人所创年利润的平均数是多少万元?2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。五、课堂小结年龄频数28≤X<30430≤X<32332≤X<34834≤X<36736≤X<38938≤X<401140≤X<42260105噪音/分贝807050401520612184频数1090数据的分析导学案5/11六、课后反思龙井第四中学八年级数学导学案组姓名编号2003课题:中位数和众数(一)一、自学教材,明确目标:1、认识中位数和众数,并会求出一组数据中的众数和中位数。2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。3、会利用中位数、众数分析数据信息做出决策。二、研读教材,解读目标:1、理解中位数的意义及在实际问题中的作用(分析116页问题2、例4、讲析117页练习)。2、理解众数的意义及在实际问题中的作用(分析118页例5、讲析118页练习1、2)。3、讲析教材121页习题2.三、巩固训练,达成目标:1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是。2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()A.97、96B.96、96.4C.96、97D.98、974.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25B.23、24C.25、25D.23、255、某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。四、课后练习:1、一鞋店试销一种新款女鞋,试销期间卖出情况如下表:型号2222.52323.52424.525数量/双351015832对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数C.中位数D.方差2、某班20名学生身高测量的结果如下表:身高1.531.541.551.561.571.58人数135641该班学生身高的中位数分别是()A、1.56B、1.55C、1.54D、1.57数据的分析导学案6/113.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:温度(℃)-8-1715212430天数3557622请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?五、课堂小结六、课后反思数据的分析导学案7/11龙井第四中学八年级数学导学案组姓名编号2004课题:中位数和众数(二)一、自学教材,明确目标:1、进一步认识平均数、众数、中位数都是数据的代表。2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。3、能灵活应用这三个数据代表解决实际问题。二、研读教材,解读目标:围绕目标,分析讲解119页例6、121页练习1、122页习题5、6、7学法指导:首先应复习平均数、众数和中位数的定义,将这三者进行比较,归纳三者的各自特点,以保证学生在应用过程中不致盲目乱用。以下是这三个数据代表的异同。平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。另外要注意:平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.实际问题中求得的平均数,众数,中位数应带上单位.三、巩固训练,达成目标:1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分5060708090100110120人数2361415541分别求出这些学生成绩的众数、中位数和平均数.2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17。乙群:3、4、4、5、5、6、6、54、57。(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙数据的分析导学案8/11群游客年龄特征的是。四、课后练习:1、某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数11215320工资5500500035003000250020001500(1)、求该公司职员月工资的平均数、中位数、众数?(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:部门ABCDEFG人数1124223每人所创的年利润2052.52.11.51.51.2根据表中的信息填空:(1)该公司每人所创年利润的平均数是万元。(2)该公司每人所创年利润的中位数是万元。(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答五、课堂小结六、课后反思数据的分析导学案9/11龙井第四中学八年级数学导学案组姓名编号2005课题:极差(一)一、自学教材,明确目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、回忆所学,解读目标:1、叫做这组数据的极差。三、巩固训练,达成目标:1、5名学生的体重分别是41、53、53、51、67(单位:kg),这组数据的极差是()A、27B、26C、25D、242、下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数B.中位数C.众数D.极差3、已知一组数据2.1、1.9、1.8、x、2.2的平均数为2,则极差是。4、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)90、95、87、92、63、54、82、76、55、100、45、80计算这组数据的极差,这个极差说明什么问题?将数据适当分组,做出频率分布表和频数分布直方图。四、课后练习:1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是()A.0.4B.16C.0.2D.无法确定2、一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是()A.8B.16C.9D.173、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是。4、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X=.五、课堂小结六、课后反思数据的分析导
本文标题:数据的分析导学案
链接地址:https://www.777doc.com/doc-2870100 .html