您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > FIR数字滤波器设计与软件实现
实验二:FIR数字滤波器设计与软件实现一、实验指导1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。(3)掌握FIR滤波器的快速卷积实现原理。(4)学会调用MATLAB函数设计与实现FIR滤波器。2.实验内容及步骤(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示;图1具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。(5)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材;○2采样频率Fs=1000Hz,采样周期T=1/Fs;○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率p20.24pf,通带最大衰为0.1dB,阻带截至频率s20.3sf,阻带最小衰为60dB。3、实验程序框图如图2所示,供读者参考。图2实验程序框图4.信号产生函数xtg程序清单(见教材)二、滤波器参数及实验程序清单1、滤波器参数选取根据实验指导的提示③选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz。代入采样频率Fs=1000Hz,换算成数字频率,通带截止频率p20.24pf,通带最大衰为0.1dB,阻带截至频率s20.3sf,阻带最小衰为60dB。所以选取?窗函数。与信号产生函数xtg相同,采样频率Fs=1000Hz。按照图2所示的程序框图编写的实验程序为exp2.m。2、实验程序清单%FIR数字滤波器设计及软件实现clearall;closeall;%==调用xtg产生信号xt,xt长度N=1000,并显示xt及其频谱,=========N=1000;xt=xtg(N);fp=120;fs=150;Rp=0.2;As=60;Fs=1000;%输入给定指标%(1)用窗函数法设计滤波器Fs=1000,T=1/Fsxt=xtg产生信号xt,并显示xt及其频谱用窗函数法或等波纹最佳逼近法设计FIR滤波器hn对信号xt滤波:yt=fftfilt(hn,xt)1、计算并绘图显示滤波器损耗函数2、绘图显示滤波器输出信号ytEndwc=(fp+fs)/Fs;B=2*pi*(fs-fp)/Fs;Nb=ceil(11*pi/B);hn=fir1(?);%要求填入参数Hw=abs(fft(hn,?));%要求填入参数ywt=fftfilt(?);%要求填入参数%以下为用窗函数法设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形)f=[0:1023]*Fs/1024;figure(2)subplot(2,1,1)plot(f,20*log10(Hw/max(Hw)));grid;title('(a)低通滤波器幅频特性')axis([0,Fs/2,-120,20]);xlabel('f/Hz');ylabel('幅度')t=[0:N-1]/Fs;Tp=N/Fs;subplot(2,1,2)plot(t,ywt);grid;axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_w(t)');title('(b)滤除噪声后的信号波形')%(2)用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0];%确定remezord函数所需参数f,m,devdev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs);hn=remez(?);%要求填入参数Hw=abs(fft(hn,?));%要求填入参数yet=fftfilt(?);%要求填入参数%以下为用等波纹设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形)figure(3);subplot(2,1,1)f=[0:1023]*Fs/1024;plot(f,20*log10(Hw/max(Hw)));grid;title('(c)低通滤波器幅频特性')axis([0,Fs/2,-80,10]);xlabel('f/Hz');ylabel('幅度')subplot(2,1,2);plot(t,yet);grid;axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_e(t)');title('(d)滤除噪声后的信号波形')三、实验程序运行结果用窗函数法设计滤波器,滤波器长度Nb=184。滤波器损耗函数和滤波器输出yw(nT)分别如图3(a)和(b)所示。用等波纹最佳逼近法设计滤波器,滤波器长度Ne=83。滤波器损耗函数和滤波器输出ye(nT)分别如图3(c)和(d)所示。两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图3(b)和(d)可以直观地看出时延差别。图3四、思考题(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl和pu,阻带上、下截止频率为sl和su,试求理想带通滤波器的截止频率clcu和。(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?
本文标题:FIR数字滤波器设计与软件实现
链接地址:https://www.777doc.com/doc-2871816 .html