您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > k52006年高考第一轮复习数学12.3统计
知识就是力量本文为自本人珍藏版权所有仅供参考12.3统计●知识梳理1.抽样当总体中的个体较少时,一般可用简单随机抽样;当总体中的个体较多时,一般可用系统抽样;当总体由差异明显的几部分组成时,一般可用分层抽样,而简单随机抽样作为一种最简单的抽样方法,又在其中处于一种非常重要的地位.实施简单随机抽样,主要有两种方法:抽签法和随机数表法.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样就显得不方便,系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均匀分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等概率抽样.分层抽样在内容上与系统抽样是平行的,在每一层进行抽样时,采用简单随机抽样或系统抽样,分层抽样也是等概率抽样.2.样本与总体用样本估计总体是研究统计问题的一种思想方法.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图,当总体中的个体取不同值较多,甚至无限时,其频率分布的研究要用到初中学过的整理样本数据的知识.用样本估计总体,除在整体上用样本的频率分布去估计总体的分布以外,还可以从特征数上进行估计,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差)去估计总体的方差(标准差).3.正态分布正态分布在实际生产、生活中有着广泛的应用,很多变量,如测量的误差、产品的尺寸等服从或近似服从正态分布,利用正态分布的有关性质可以对产品进行假设检验.4.线性回归直线设x、y是具有相关关系的两个变量,且相应于n组观察值的n个点大致分布在一条直线的附近,我们把整体上这n个点最接近的一条直线叫线性回归直线.特别提示在三种抽样中,简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法是建立在它的基础上的.三种抽样方法的共同点是:它们都是等概率抽样,体现了抽样的公平性.三种抽样方法各有其特点和适用范围,在抽样实践中要根据具体情况选用相应的抽样方法.●点击双基1.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是A.310C3B.89103C.103D.101解析:简单随机抽样中每一个体的入样概率为Nn.答案:C2.(2004年江苏,6)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到知识就是力量他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为2015105人数(人)时间(h)00.51.01.5A.0.6hB.0.9hC.1.0hD.1.5h解析:一天平均每人的课外阅读时间应为一天的总阅读时间与学生数的比,即5050.2105.1100.1205.050=0.9h.答案:B3.一个年级有12个班,每个班有50名同学,随机编号为1~50号,为了了解他们在课外的兴趣爱好,要求每班的33号学生留下来参加阅卷调查,这里运用的抽样方法是A.分层抽样法B.抽签法C.随机数表法D.系统抽样法答案:D4.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1<ξ≤1)等于A.2Φ(1)-1B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)解析:对正态分布,μ=Eξ=3,σ2=Dξ=1,故P(-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).答案:B5.为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:广告费用(千元)1.04.06.010.014.0销售额(千元)19.044.040.052.053.0现要使销售额达到6万元,则需广告费用为______.(保留两位有效数字)解析:先求出回归方程yˆ=bx+a,令yˆ=6,得x=1.5万元.答案:1.5万元●典例剖析【例1】某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.剖析:要说明每个个体被取到的概率相同,只需计算出用三种抽样方法抽取个体时,每个个体被取到的概率.解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号的160个签,从中随机抽20个.显然每个个体被抽到的概率为16020=81.(2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.然后在第1组用抽签法随机抽取一个号码,如它是第k号(1≤k≤8),则在其余组中分别抽取第k+8n(n=1,2,3,…,19)号,此时每个个体被抽到的概率为81.知识就是力量(3)分层抽样法:按比例16020=81,分别在一级品、二级品、三级品、等外品中抽取48×81=6个,64×81=8个,32×81=4个,16×81=2个,每个个体被抽到的概率分别为486,648,324,162,即都是81.综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是81.评述:三种抽样方法的共同点就是每个个体被抽到的概率相同,这样样本的抽取体现了公平性和客观性.思考讨论现有20张奖券,已知只有一张能获奖,甲从中任摸一张,中奖的概率为201,刮开一看没中奖.乙再从余下19张中任摸一张,中奖概率为191,这样说甲、乙中奖的概率不一样,是否正确?【例2】将温度调节器放置在贮存着某种液体的容器内,调节器设定在d℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N(d,0.52).(1)若d=90°,求ξ89的概率;(2)若要保持液体的温度至少为80℃的概率不低于0.99,问d至少是多少?(其中若η~N(0,1),则Φ(2)=P(η2)=0.9772,Φ(-2.327)=P(η-2.327)=0.01).剖析:(1)要求P(ξ89)=F(89),∵ξ~N(d,0.5)不是标准正态分布,而给出的是Φ(2),Φ(-2.327),故需转化为标准正态分布的数值.(2)转化为标准正态分布下的数值求概率p,再利用p≥0.99,解d.解:(1)P(ξ89)=F(89)=Φ(5.09089)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d满足0.99≤P(ξ≥80),即1-P(ξ80)≥1-0.01,∴P(ξ80)≤0.01.∴Φ(5.080d)≤0.01=Φ(-2.327).∴5.080d≤-2.327.∴d≤81.1635.故d至少为81.1635.评述:(1)若ξ~N(0,1),则η=~N(0,1).(2)标准正态分布的密度函数f(x)是偶函数,x0时,f(x)为增函数,x0时,f(x)为减函数.深化拓展在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N(μ,σ2);(2)确定一次试验中的取值a;(2)作出统计推断:若a∈(μ-3σ,μ+3σ),则接受假设,若a(μ-3σ,μ+3σ),则拒绝假设.如:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N(30,0.8),质检人员从该厂某一天生产的1000块砖中随机抽查一块,测得它的抗断强度为27.5kg/cm2,你认为该厂这天知识就是力量生产的这批砖是否合格?为什么?分析:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)内的概率为0.997,故ξ几乎必然落在上述区间内.于是把μ=30,σ=0.8代入,算出区间(μ-3σ,μ+3σ)=(27.6,32.4),而27.5(27.6,32.4).∴据此认为这批砖不合格.【例3】已知测量误差ξ~N(2,100)(cm),必须进行多少次测量,才能使至少有一次测量误差的绝对值不超过8cm的频率大于0.9?解:设η表示n次测量中绝对误差不超过8cm的次数,则η~B(n,p).其中P=P(|ξ|8)=Φ(1028)-Φ(1028)=Φ(0.6)-1+Φ(1)=0.7258-1+0.8413=0.5671.由题意,∵P(η≥1)0.9,n应满足P(η≥1)=1-P(η=0)=1-(1-p)n0.9,∴n)5671.01lg()9.01lg(=4329.0lg1=2.75.因此,至少要进行3次测量,才能使至少有一次误差的绝对值不超过8cm的概率大于0.9.●闯关训练夯实基础1.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N等于A.150B.200C.120D.100解析:∵N30=0.25,∴N=120.答案:C2.设随机变量ξ~N(μ,σ),且P(ξ≤C)=P(ξC),则C等于A.0B.σC.-μD.μ解析:由正态曲线的图象关于直线x=μ对称可得答案为D.答案:D3.(2003年全国,14)某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______辆、______辆、______辆.解析:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为920046=2001,而三种型号的轿车有显著区别.根据分层抽样分为三层按2001比例分别有6辆、30辆、10辆.答案:630104.某厂生产的零件外直径ξ~N(8.0,1.52)(mm),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9mm和7.5mm,则可认为A.上、下午生产情况均为正常B.上、下午生产情况均为异常C.上午生产情况正常,下午生产情况异常D.上午生产情况异常,下午生产情况正常解析:根据3σ原则,在8+3×1.5=8.45(mm)与8-3×1.5=7.55(mm)之外时为异常.答案:C5.随机变量ξ服从正态分布N(0,1),如果P(ξ1)=0.8413,求P(-1ξ0).解:∵ξ~N(0,1),∴P(-1ξ0)=P(0ξ1)=Φ(1)-Φ(0)=0.8413-0.5=0.3413.6.公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如知识就是力量果某地成年男子的身高ξ~N(173,72)(cm),问车门应设计多高?解:设公共汽车门的设计高度为xcm,由题意,需使P(ξ≥x)<1%.∵ξ~N(173,72),∴P(ξ≤x)=Φ(7173x)>0.99.查表得7173x>2.33,∴x>189.31,即公共汽车门的高度应设计为190cm,可确保99%以上的成年男子头部不跟车门顶部碰撞.培养能力7.一投资者在两个投资方案中选择一个,这两个投资方案的利润x(万元)分别服从正态分布N(8,32)和N(6,22),投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?解:对第一个方案,有x~N(8,32),于是P(x5)=1-P(x≤5)=1-F(5)=1-Φ(385)=1-Φ(-1)=1-[1-Φ(1)]=Φ(1)=0.8413.对第二个方案,有x~N(6,22),于是P(x5)=1-P(x≤5)=1-F(5)=1-Φ(265)=1-Φ(-0.5)=Φ(0.5)=0.6915.相比之下,“利润超过5万元”的概率以第一个方案为好,可选第一个方案.探究创新8.一个容量为100的样本,数据的分组和各组的一些相关信息如下:分组频数频率累积频率[12,15)6[15,18)0.08[18,21)0.30[21,24)21[24,27)0.69[27,30)16[30,33]0.10[33,36)1.00合计1001.00(1)完成上表;(2)画出频率分布直方图和累积频率分布图;(3)根据累积频率分布图,总体中小于22的样本数据大约占多大的百分比?解:(1)分组频数频率累积频率[12,15)60.060.06[15,18)80.080.14[18,21)160.160.30[21,24)210.210.51[24,27)180.180.69[
本文标题:k52006年高考第一轮复习数学12.3统计
链接地址:https://www.777doc.com/doc-2881725 .html