您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > MOS管正确选择的步骤
MOS管正确选择的步骤浏览:898|更新:2013-10-3115:08正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。第一步:选用N沟道还是P沟道为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS.知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V.第二步:确定额定电流第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在导通时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%.而对于最终用户来说,这意味着封装尺寸的大幅减小。第三步:确定热要求选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。雪崩击穿是指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加。该电流将耗散功率,使器件的温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。对最终用户而言,这意味着要在系统中采用更大的封装件。第四步:决定开关性能选择MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff)。MOSFET开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。在选用三级管时,首先必须清楚三极管的类型及材料。常用三极管的类型有NPN型与PNP型。由于这两类三极管工作是对电压的极性要求不同,所以它们是不能相互代换的。所以认清这些三极管也是很重要的。晶体管命名方法国内命名的法则,拿型号3DG1815-Y为说明:第一部分用阿拉伯字表示器件的电极数目2:表示二极管;3:表示三极管;第二部分表示器件的材料和极性A:PNP锗;B:NPN锗;C:PNP硅;D:NPN硅;E:化合物材料;第三部分表示器件的类型G:高频小功率;D:低频大功率;A:高频大功率;K:开关管;X:低频小功率,大于等于1W为大功率管,小于1W为小功率管,功率不是很大,封装比较大为中功率管;第四部分用阿拉伯字表示序号(型号);第五部分表示器件的规格(放大档次);国外命名方法(如日本工业标准(JIS)规定命名):2SC1815-Y第一部分用数字表示类型或有效电极数1:表示二极管;2:表示三极管;第二部分“S”表示日本电子工业协会(EIAJ)注册产品;第三部分用字母表示器件的极性及类型A:PNP高频;B:PNP低频;C:NPN高频;D:NPN低频;J:P沟道场效应管;K:N沟道场效应管第四部分用数字表示在日本电子工业协会登记的顺序号;第五部分表示器件的规格(放大档次)三极管主要技术参数三极管主要技术参数选用三极管需要了解三极管的主要参数。若手中有一本晶体管特性手册最好。三极管的参数很多,根据实践经验,我认为主要了解三极管的四个极限参数:ICM,BVCEO,PCM及fT即可满足95%以上的使用需要。1.ICM是集电极最大允许电流,三极管工作时,当它的集电极电流超过一定数值时,他的电流放大系数β将下降。为此规定三级电流放大系数β变化不超过允许值时的集电极最大电流称为ICM。所以在使用中当集电极电流IC超过ICM时不至于损坏三级管,但会使β值减小,影响电路的工作性能;2.BVCEO是三级管基极开路时,集电极-发射极反向击穿电压。如果在使用中加载集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降;3.PCM是集电极最大允许耗散功率。三极管在工作是,集电极电流集电在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于PCM下长时间工作,将会损坏三极管。需要注意的是大功率的三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。4.特征频率fT。随着工作频率的升高,三极管的放大能力将会下降,对应β=1时的频率fT叫作三极管的特征频率。小功率三极管在电子电路的应用最多。主要用作小信号的放大、控制或振荡器。选用三极管时首先要搞清楚电子电路的工作频率大概是多少。如中波收音机的振荡器的最高频率是2MHz左右;而调频收音机的最高震荡频率为120MHz左右;电视机中VHF频段的最高振荡率为250MHz左右:UHF频段的最高振荡率接近1000MHz.因此工程设计中一般要求三极管的fT大于3倍的实际工作频率。所以可按照此要求来选择三极管的特征频率fT。由于硅材料高频三极管的fT一般不低于50Hz,所以在音频电子电路中使用这类管子可不考虑fT这个参数。小功率三极管BVCEO的选择可以根据电路的电源电压来决定,一般情况下只要三极管的BVCEO大于电路中电源的最高电压即可。当三极管的负载是感性负载是,如变压器、线圈等时BVCEO数值的选择要慎重,感性负载上的感应电压可能达到电源电压的2~3倍(如节能灯中的升压三极管)。一般小功率三极管的BVCEO都不低于15V,所以在无电感元件的低电压电路中也不用考虑这个参数。一般小功率三极管的ICM在30-50mA之间,对于小信号电路一般可以不予以考虑。但对于驱动继电器及推动大功率音箱的管子要认真计算一下。当然首先要了解继电器的吸合电流是多少毫安,一次来确定三极管的ICM。当我们估算了电路中三极管的工作电流(即集电极电流),有知道了三极管电集到发射极之后的电压后,就可以根据P=U*I来计算三极管的集电极最大允许耗散功率PCM。国产及国外产的小功率三极管的型号极多,它们的参数有一部分是相同的,有一部分是不同的。只要你根据以上分析的使用条件,本着“大能代小”的原则(即BVCEO高的三极管可以代替BVCEO低的三极管:ICM大的三极管可以代替ICM小的三极管等),就可以对三极管应用自如了。对于大功率三极管,只要不是高频发射电路,我们都不必考虑三极管的特征频率fT。对于三极管的集电极-发射极反向击穿电压BVCEO这个极限参数的考虑与小功率三极管也是一样的。对于集电极最大允许电流ICM的选择主要也是根据三极管所带的负载情况而计算的,三极管的集电极最大允许耗散功率PCM是大功率三极管重点考虑的问题,需要注意的是大功率三极管必须有良好的散热器并考虑它的安装条件。
本文标题:MOS管正确选择的步骤
链接地址:https://www.777doc.com/doc-2888857 .html