您好,欢迎访问三七文档
B超重点超声的基本知识:一、超声波的物理性能:正常人耳能听到的声音频率范围为20~20000Hz(赫兹),低于20Hz者称为次声波,声源振动频率高于20000Hz者则称为超声波。超声波属于机械波,可在弹性介质中以固有的速度传播。超声在固体中的振动状态有纵波、横波、表面波三种,在液体和气体中只有纵波,医疗诊断用的是超声的纵波。超声波有三个基本物理量,即波长(λ)、频率(f)、和声速(C),它们之间的关系为:C=λ.f波长(λ)表示声波在介质中传播时两个相邻周期的质点之间的长度,单位为毫米(mm)。频率(f)表示单位时间内质点振动的次数,以赫兹(Hz)为单位,在超声诊断中,使用频率范围通常为2.5~10MHz(兆赫兹,1MHz=1000000Hz)。声速(C)表示超声在某种介质中的传播速度,即单位时间内传播的距离,单位为米/秒(m/s)。一般而言,固体物含量高者声速最高;含纤维组织(主要为胶原纤维)高者声速较高;含水量较高的软组织声速较低;体液中声速更低;含气脏器声速最低。在医学诊断中,超声在人体中的平均传播速度按1500m/s计算。超声波的束射性:由于超声波频率高,波长短,在均匀介质中呈直线传播具有良好的束射性或指向性,因此可对人体组织器官进行定向探测。靠近声源的近场区声束宽度几乎相等,指向性较好,而远场区声束则有一定的扩散,扩散角与声源直径(D)及波长(λ)有关,即Sinθ=1.22λ/D。超声成像中需加用声束聚焦技术,以提高远场区的图像质量。超声波的反射:超声波在两种不同介质中传播时会发生反射。反射是指声波在界面上部分或全部返回的过程,它遵循以下定律:即①反射和入射声束在同一平面上;②反射声束与入射声束在法线的两侧;③反射角与入射角相等。超声能量的反射取决于相邻介质声阻抗的差别。声阻抗(Z)可以理解为超声在介质中传播时所遇到的阻力,它等于介质密度(ρ)与声速(C)的乘积,即Z=ρ.C,单位为瑞利。超声波反射能量由反射系数(R1)决定,式中Z1和Z2代表介质1和介质2的声阻抗。R1=[(Z2-Z1)/(Z2+Z1)]2的平方。如果声阻抗相等(Z1=Z2),则R1=0,无反射产生,这种情况见于生理状态下胆囊内胆汁、膀胱内尿液和眼球玻璃体等,病变时可见于胸水、腹水、心包积液和囊肿等;如果声阻抗不同(Z1≠Z2),则R1≠0,反射存在;只要声阻抗差值大于1‰时,就会产生反射回波,所以超声波对人体软组织具有很高的分辨力。当两种介质的声阻抗相差很大时(Z1Z2),则R1很大,产生强反射,超声波几乎全部反射,如在空气和水或空气和组织的界面上。正因为如此,超声检查时要在探头与体表之间涂上适量的超声耦合剂,以减少空气的影响,减少声能的损失。此外,超声检查肺组织困难就是因为肺组织充满气体的缘故。人体软组织和实质性脏器的密度、声速、声阻抗与水相接近(因脏器内水的成分约占60%~70%),声阻抗差很小,因此反射很少,如在垂直于肝—肾分界面的入射声波中,反射回肝中的声能大约只占入射波能量的6%,其余的94%透过界面进入肾脏。总之,界面反射是超声波诊断的基础,没有界面反射就得不到需要诊断的信息,但反射太强,所剩余的超声能量就太弱,会影响进入到第二、三层介质中的超声能量,使诊断受到影响。超声波的折射:折射是指超声波在通过不同声速的介质时发生空间传播方向改变的过程。超声波的折射遵循折射定律,即入射角正弦与折射角正弦之比等于界面两侧介质的声速之比,即:SinQi/SinQt=C1/C2由上式可知,当入射声波垂直于界面时,不发生折射;当C2C1时,随着入射角的增大,折射角也增大;当入射角逐渐增大到某一角度θ时,折射角达到90°,即折射波沿界面传播;而当入射角超过θ时,入射声波全部反射到介质1中,无声波进入介质2中,此时θ角称为全反射临界角。声波经液体入射人体皮肤,其临界角为70°~80°,即入射角超过80°时,则无透射声波。如果声速相等就没有折射,声波在由一种介质进入另一种介质时不发生偏移。人体各种软组织的声速相当接近,因此其间发生很少的折射可被忽略掉,超声波可看成是直线传播。超声波的散射:超声波在传播的过程中,遇到远小于波长的微小粒子,超声波与微粒相互作用后,大部分超声能量继续向前传播,小部分能量激发微粒振动,形成新的点状声源并以球面波方式向各个方向发散传播,称为散射。探头可以在任何角度接收到散射波。人体组织器官内部的微小结构在超声场中能产生散射,是构成脏器内部图像的另一声学基础。红细胞的直径比超声波要小得多,它是一种散射体。多普勒血流仪即是利用血液中红细胞有较强的散射,才获得多普勒频移信号。超声波的绕射:绕射亦称衍射,当障碍物直径等于或小于λ/2时,则超声绕过该障碍物而继续前进,反射很少,这种现象叫作绕射。超声波波长越短,能发现的障碍物越小。这种发现最小障碍物的能力,称为显现力。此外,邻近超声束边缘的物体,虽然没有阻碍超声的传播,但会使一部分声波偏离原来的传播方向,沿其边缘绕行,绕过物体后又以接近原来的方向传播。绕射现象可导致某些被测体后方声影抵消,绕射现象是复杂的,它与障碍物的大小、声波波长等有关。超声波的衰减特性:超声波在介质中传播时,入射声能随传播距离的增加而减少的现象称为超声衰减。导致衰减的原因主要有超声反射、散射、声速的扩散和吸收。声速扩散是指声波随着传播距离的增加向声轴周围扩散而引起单位面积上声能量的减少,即声强减弱。这种衰减可以使用聚焦加以克服。吸收衰减是由于介质或人体组织“内摩擦”或粘滞性而转换成热能被组织“吸收”。吸收的多少与超声波的频率、介质的粘滞性、导热性、温度和传播距离等有关。人体不同组织对入射声能的衰减不同,其中以蛋白质的衰减最大,水分衰减最小,因此含水量多的组织声能衰减少。超声波的分辨力:超声波的分辨力系指能在荧光屏上分别显示两点的最小间距的能力。根据方向不同可分为纵向分辨力和横向分辨力。纵向分辨力:是指超声能区分平行于声速的两点间的最小距离,也称轴向分辨力。它取决于波长,通常频率越高,波长越短,纵向分辨率越高。单纯从理论上计算,能测到物体的最小直径,称做最大理论分辨力,在数值上等于λ/2,但实际显示的分辨力要低于理论分辨力5~8倍。横向分辨力:是指超声能区分垂直于声速的两点间的最小距离。它取决于声束直径的大小,如声束直径大则横向分辨力差。一般医用超声诊断仪的横向分辨力都比纵向分辨力差。多普勒效应:由于声源和接受体在介质中存在相对运动而引起所接收的振动频率不同于声源所发射的频率,其间有频率差(频移),其差别与相对运动的速度有关,此现象称为多普勒效应。其方程式为:fd=±2v.cosθ.fo/c或V=fd.c/2fo.cosθ式中fd为多普勒频移,fo为入射频率,V为接受体运动速度,C为声速,θ为入射波与运动方向(如血流方向)之间的夹角。由于入射频率和介质的声传播速度是恒定的,因此当声速与血流间夹角一定时,频移的大小取决于血流的速度,而频移fd可以用多普勒装置检测出来,根据上式自然就可求得血流速度V,这便是多普勒超声诊断仪用来检测人体血流速度的基本原理。多普勒频移fd范围一般在数百到数千赫兹之间,为人耳所能听到的音频范围内,所以检出fd后,可以发出声响并且监听。超声波的发射、接收和成像原理:超声波的发射和接收:超声波是机械波,可由多种能量通过换能器转变而成。医学诊断用的超声波发生装置是根据压电效应原理制造。经过人工极化过的压电晶体(如人工合成的压电陶瓷),在机械应力的作用下会在电极表面产生正、负电荷,即机械能转变为电能,此现象称为正压电效应;反之,将压电晶体置于交变电场中,晶体就沿一定的方向压缩或膨胀,即电能转变为机械能,此现象称为逆压电效应。超声波诊断仪主要由两部分组成,即主机与探头。探头也称为换能器,由压电晶体组成,用来发射和接收超声波。发射:超声波的发射是利用逆压电效应原理。当压电晶体受到高频交变电压作用时,将在厚度方向上产生胀缩现象,即机械振动,这个振动的晶片形成了超声波的声源,引起邻近介质形成疏密相间的波,即超声波。接收:超声波的接收是利用正压电效应原理。当界面反射回来的声波作用于探头的压电晶体时,相当于对其施加一外力,使晶体两边产生携带回声信息的微弱电压信号,将这种电信号经过放大、处理之后则能在显示屏上显示出用于诊断的声像图。超声波的成像原理超声成像主要是依据超声波在介质中传播的物理特性,其中最为重要的是超声波反射、散射的特性。人体各种器官与组织,包括病理组织均有它特定的声阻抗,当超声波在人体这一复杂的介质中传播时,因各组织之间存在着声阻抗差别和大小不同界面,从而产生不同的反射与散射。探头接收反射、散射回波信号,并根据其强弱用明暗不同的光点依次显示在荧屏上,通过不同的扫查方式显示出人体组织脏器各层面图象,称之为声像图。人体器官表面有被膜包绕,被膜与其下方组织的声阻抗差大,形成良好的界面反射,声像图上出现清晰而完整的周边回声,从而显示出器官的轮廓、形态与大小。超声成像中将来自大界面的反射波和散射体的散射波称为回波或回声,根据回声信息的多少,可大致分为以下几类:①无回声型:表明介质均匀,内无界面反射,透声性好。主要见于含液性器官如充盈的膀胱、胆囊等,或含液性病变如囊肿、积液等。②低回声型:表明介质均匀细小,声阻抗差值较小,反射弱。多见于实质而又均质的器官,如肝、脾等。③强回声型:表明界面声阻抗差值大,反射强。主要见于肺、胃肠及骨骼等。超声诊断仪的类型:应用于临床的A型、B型、M型和D型超声诊断仪都属于反射型超声诊断设备,它是根据超声在通过两种有差异的声阻抗界面时产生回波反射的原理而设计。A型即幅度调制型。此法是以波幅的高低代表界面反射的强弱。当单一晶体超声束在传播中遇到人体内各种界面时,按照回波出现先后,从左到右依次按实际距离显示在示波屏水平线上,并按波的有无、多少、波幅高低、波形等,再结合体表多个方向,多点探测所描绘出病变大小等进行综合分析来判断疾病。它对于鉴别病变的物理性质、定位穿刺抽液等较为适用,是最早兴起和使用的一种超声诊断仪,由于其操作费时,缺乏直观图像以及B型诊断仪的推出,A型仪器现已基本淘汰不用。B型即辉度调制型。此法是以光点的明暗度(灰阶)代表界面反射的强弱,反射强则亮,反射弱则暗。采用多晶体多声束连续扫描,每一单条声束上的光点连续从而构成一幅切面图像,并根据光点的有无、强弱、多少、分布等情况可以显示脏器或病变内部的二维图像。图像纵轴表示组织深度,横轴表示扫查的密度。当扫描速度超过每秒24帧时则能显示脏器的实际活动状态,称为实时显像。根据探头及扫描方式不同,可分为线型扫描、扇型扫描和凸弧型扫描等。B型超声尤其是现代实时灰阶B超能清晰、直观而逼真显示脏器或病变组织的形态、大小、内部结构以及毗邻关系等。因此,它是目前临床使用最为广泛的超声诊断仪,也是最基本的但最为重要的一种显像方式。M型也属一种辉度调制型。它是将单声束超声波所经过的人体各层解剖结构的回声以“运动—时间”曲线的形式显示的一种超声诊断法。其图像纵轴代表人体组织自浅至深的空间位置,横轴代表扫描时间。此法主要用于心脏的检查,故称M型超声心动图。通常它与心脏实时成像结合使用,利用M型取样线来探测心脏结构的活动,精确测量心脏各时相的室壁厚度和房室大小等,测定心功能。D型即多普勒超声,它是应用多普勒效应原理检测心脏、血管内血液流动时所反射回来的各种多普勒频移信息,以频谱或彩色的形式显示,所以分为频谱多普勒和彩色多普勒。1、频谱多普勒它是将血流的信息以波形(即频谱图)的形式显示,其横轴代表时间,即血流显示的时相。纵轴代表频移,即血流的速度。在零位线上方的频谱代表血流朝向探头流动,在下方的频谱代表血流背离探头流动。频谱多普勒可提供血流速度与方向、血流时相与性质(如湍流、层流)等参数。同时可监听血液流动状态的声音称多普勒信号音,正常为悦耳的声音。根据发射和接收超声方式的不同可分为脉冲波多普勒和连续波多普勒两种。⑴脉冲波多普勒:采用单个换能器(探头)以短脉冲群方式发射超声,在发射间歇期又用以接收回声信号。探头在发射短脉冲群超声的间歇时间,选择
本文标题:B超基础知识
链接地址:https://www.777doc.com/doc-2904318 .html