您好,欢迎访问三七文档
污水的厌氧生物处理TheAnaerobicProcesses1概述2厌氧法的基本原理3厌氧法的工艺和设备4厌氧法的影响因素5分段厌氧处理法污水厌氧生物处理的发展过程早期发展1881~1950年第二代厌氧反应器1955年开发了厌氧接触法新工艺,标志着现代厌氧反应器的开端。第三代厌氧反应器1980年Switzenbaum等推出了厌氧附着膜膨胀床反应器(AAFEB),还有厌氧流化床(AFB)。1概述厌氧生化法的优点:(1)应用范围广因供氧限制,好氧法一般适用于中、低浓度有机废水的处理,而厌氧法适用于中、高浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的,如固体有机物、着色剂蒽醌和某些偶氮染料等。(2)能耗低好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要充氧,而且产生的沼气可作为能源。废水有机物达一定浓度后,沼气能量可以抵偿消耗能量。研究表明,当原水BOD5达到1500mg/L时,采用厌氧处理即有能量剩余。有机物浓度愈高,剩余能量愈多。一般厌氧法的动力消耗约为活性污泥法的1/10。(3)氮、磷营养需要量较少好氧法一般要求BOD:N:P为l00:5:1,而厌氧法的BOD:N:P为l00:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。(4)有杀菌作用厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。(5)污泥易贮存厌氧活性污泥可以长期贮存,厌氧反应器可以季节性或间歇性运转。厌氧生物处理法缺点:(1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理所需时间比好氧设备长;(2)出水往往达不到排放标准,需要进一步处理,故一般在厌氧处理后串联好氧处理;(3)厌氧处理系统操作控制因素较为复杂。(4)厌氧过程会产生气味对空气有污染。2厌氧法的基本原理废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物(anaerobicmicrobes)(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷(methane)和二氧化碳(carbondioxide)等物质的过程,也称为厌氧消化(anaerobicdigestion)。对批量污泥静置考察,可以见到污泥的消化过程明显分为两个阶段。固态有机物先是液化,称液化阶段;接着降解产物气化,称气化阶段;在常温下,整个过程历时半年以上。传统的厌氧消化理论为两阶段理论第一阶段:酸化阶段,最显著的特征是液态污泥的pH值迅速下降。污泥中的固态有机物或污水中的大分子化合物,如淀粉、纤维素、油脂、蛋白质等,在无氧环境中降解时,转化为有机酸、醇、醛、水分子等液态产物和CO2、H2、NH3、H2S等气体分子,气体大多溶解在泥液中。转化产物中有机酸是主体。低pH值有抑制细菌生长的作用,NH3的溶解产物NH4OH有中和作用。第二阶段:气化阶段,由低分子的有机酸经微生物作用转化为气体,气体类似沼泽散发的气体,可称沼气,主体是CH4,CO2也相当多,还有微量H2、H2S等,因此气化阶段常称甲烷化阶段。第一阶段普通厌氧菌碳水化合物、脂肪、蛋白质消化有机酸、乙醇、乙醛第二阶段绝对厌氧菌甲烷二氧化碳消化细胞合成新细胞酶细胞合成厌氧消化两阶段示意图厌氧消化四阶段复杂污染物的厌氧降解过程可以分为四个阶段水解阶段、发酵阶段(又称酸化阶段)、产乙酸阶段、产甲烷阶段框图表示见下图1.水解阶段在细菌胞外酶的作用下大分子的有机物水解为小分子的有机物2.发酵阶段梭状芽孢杆菌、拟杆菌等酸化细菌吸收并转化为更为简单的化合物分泌到细胞外,产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨等复杂有机物1水解2发酵脂肪酸乙酸H2+CO23产乙酸CH4+CO2H2S+CO2硫酸盐还原硫酸盐还原4产甲烷4产甲烷硫酸盐还原3.产乙酸阶段上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质,这一阶段的主导细菌是乙酸菌。同时水中有硫酸盐时,还会有硫酸盐还原菌参与产乙酸过程。4.产甲烷阶段乙酸、氢气、碳酸、甲酸和甲醇等被甲烷菌利用被转化为甲烷和以及甲烷菌细胞物质。经过这些阶段大分子的有机物就被转化为甲烷、二氧化碳、氢气、硫化氢等小分子物质和少量的厌氧污泥。废水处理工艺中的厌氧微生物在厌氧消化系统中微生物主要分为两大类:非产甲烷菌(non-menthanogens)和产甲烷细菌(menthanogens)。表19-1产酸菌和产甲烷菌的特性参数参数产甲烷菌产酸菌对pH的敏感性敏感,最佳pH为6.8~7.2不太敏感,最佳pH为5.5~7.0氧化还原电位Eh-350mv(中温),-560mv(高温)-150~200mv对温度的敏感性最佳温度:30~38℃,50~55℃最佳温度:20~35℃与好氧过程的根本区别在于不以分子态氧作为受氢体,而以化合态氧、碳、硫、氮等作为受氢体。厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌(fermentativebacteria)、产氢产乙酸细菌(acetogenicbacteria)和产甲烷细菌(methanogenicbacteria)的联合作用完成。参与消化的细菌,酸化阶段的统称产酸或酸化细菌,几乎包括所有的兼性细菌;甲烷化阶段的统称甲烷细菌。新的研究成果阐明厌氧消化经历四个阶段大分子有机物(碳水化合物、蛋白质、脂肪等)水解细菌的胞外酶水解和溶解的有机物酸化产酸细菌有机酸、醇类、醛类等/H2,CO2乙酸化乙酸细菌乙酸甲烷细菌甲烷化甲烷细菌CH4CH4复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。这个阶段主要产生较高级脂肪酸。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2。此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的l/3后者约占2/3。上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。甲烷菌的微生物学特征简介:甲烷菌属于古菌中的一类。古菌(Archaeobacteria)与原核生物极其接近。研究利用基因分析手段(DNA的G+C%,16SrRNA碱基顺序比较)发现,有一些特点与真核生物相同。古菌的特点形态:薄、扁平、直角几何形态;细胞结构:组分特异性;含有内含子;代谢:特殊的辅酶,代谢多样性;呼吸类型:多为厌氧;繁殖速度:比细菌慢;生活习性:适应极端环境。古菌的分类按照生活习性和生理特性分为三大类:产甲烷菌,嗜热嗜酸菌,极端嗜盐菌《伯杰氏系统细菌学手册》分为五大群:产甲烷古菌,古生硫酸盐还原菌,极端嗜盐菌,无细胞壁古生菌,极端嗜热硫代谢菌甲烷发酵理论与机制•甲烷发酵理论先后提出了二阶段、三阶段和四阶段发酵理论。•目前应用较多的仍是布赖恩特(Bryant)于1979年提出的四阶段的发酵理论:•水解和发酵性细菌群将复杂有机物转化成有机酸:–纤维素、淀粉等水解为单糖,再酵解为丙酮酸;–将蛋白质水解为氨基酸,脱氨基成有机酸和氨;–脂类水解为各种低级脂肪酸和醇,例如乙酸、丙酸、丁酸、长链脂肪酸、乙醇、二氧化碳、氢、氨和硫化氢等。第一阶段:有机酸的产生•微生物群落是水解、发酵性细菌群,有专性厌氧的:梭菌属(Clostridium)拟杆菌属(Bacteriodes)丁酸弧菌属(Butyrivibrio)真细菌(Eubacterium)双歧杆菌属(Bifidobacterium)革兰氏阴性杆菌兼性厌氧的有:链球菌肠道菌•据研究,每mL下水污泥中含有水解、发酵性细菌108~109个,每克挥发性固体含1010~1011个,其中蛋白质水解菌有107个,纤维素水解菌有105个。微生物群落:–微生物群落为产氢、产乙酸细菌;只有少数被分离出来。–硫酸还原菌和其他产乙酸和氢气的细菌;第二阶段:乙酸和氢气的产生•产生过程产氢和产乙酸细菌群进一步把第一阶段的产物分解为乙酸和氢气;硫酸还原菌和其他产乙酸和氢气的细菌将第一阶段发酵的三碳以上的有机酸、长链脂肪酸、芳香族酸及醇等分解为乙酸和氢气。第二阶段:乙酸和氢气的产生第三阶段:甲烷的产生•微生物:两组生理不同的专性厌氧的产甲烷菌群–一组将H2和CO2合成CH4或CO和H2合成CH4;–另一组将乙酸脱羧生成CH4和CO2;或利用甲酸、甲醇、及甲基胺裂解为CH4。•有28%的甲烷来自H2的氧化和CO2的还原。72%的甲烷来自乙酸盐的裂解。由于大部分甲烷和二氧化碳逸出,氨(NH3)以亚硝酸铵(NH4NO2)、碳酸氢铵(NH4HCO3)形式留在污泥中,它们可中和第一阶段产生的酸,为产甲烷菌创造了生存所需的弱碱性环境。氨可被产甲烷菌用作氮源。研究表明:•概念:同型产乙酸细菌将H2和CO2转化为乙酸的过程,称为同型产乙酸阶段;•产甲烷菌只能利用H2、CO2、CO、甲酸、乙酸、甲醇及甲基胺等简单物质产生甲烷和组成自身细胞物质。第四阶段:同型产乙酸阶段①由酸和醇的甲基形成甲烷。14CH3COOH14CH4+CO2414CH3OH314CH4+CO2+2H2O施大特曼(stadtman)和巴克尔(Barker)及庇涅(Pine)和维施尼(vishhnise)1951和1957年用14C示踪原子标记乙酸的甲基碳原子证明甲烷是由甲基直接形成甲烷产生的机制:14CH4+2C3H7COOH1949年,施大特曼和巴克尔于用同位素14CO2使乙醇和丁醇氧化,产生带同位素14C的甲烷,证明甲烷可由CO2还原形成。②由醇的氧化使二氧化碳还原形成甲烷及有机酸2CH3CH2OH+14CO214CH4+2CH3COOH2C3H7CH2OH+14CO2CH4+4CH3COOH③脂肪酸有时用水作还原剂或供氢体产生甲烷2C3H7COOH+CO2+2H2O1906年索根(Soehnge,)及费舍尔(Fisher)观察到:④利用H2使CO2还原形成甲烷4H2+CO2CH4+2H2O⑤在H2和H2O存在时,巴氏甲烷八叠球菌(Methanosarcinabarkerii)与甲酸甲烷杆菌(Methanobacteriumformicicum)能将CO还原形成甲烷。3H2+COCH4+H2O2H2O+4COCH4+3CO2巴氏甲烷八叠球菌甲酸甲烷杆菌几种物质沼气发酵的产气量物质乙醇纤维素脂肪蛋白质沼气/mL9748301250704CH4/%75506871CO2/%25503229•影响废水厌氧消化处理效果的因素:–厌氧活性污泥中微生物的种类、组成、结构及污泥的颗粒大小。–能保证微生物生长条件的、结构好的厌氧消化池。最根本、最重要的是微生物的种类和组成。3厌氧法的工艺和设备按微生物生长状态分为厌氧活性污泥法(anaerobicactivatedsludge)和厌氧生物膜法(anaerobicslime);按投料、出料及运行方式分为分批式(batch)、连续式(continuous)和半连续式(semi-continuous);根据厌氧消化中物质转化反应的总过程是否在同一反应器中并在同一工艺条件下完成,又可分为一步厌氧消化(onestagedigestion)与两步厌氧消化(twostagedigestion)等厌氧活性污泥法包括普通消化池、厌氧接触工艺、上流式厌氧污泥床反应器等。3.1普通厌氧消化池普通消化池又称传统或常规消化池(conventionaldigester)消化池常用密闭的圆柱形池,废水定期或连续进入池中,经消化的污泥和废水分别由消化池底和上部排出,所产沼气从顶部排出。池径从几米至三、四十米,柱体部分的高度约为直径的1/2,池底呈圆锥形,以利排泥。为使进水与微生物尽快接触,需要一定的搅拌。常用搅拌方式
本文标题:污水的厌氧生物处理
链接地址:https://www.777doc.com/doc-290476 .html