您好,欢迎访问三七文档
3D仿真机房建模13D仿真机房建模一.摘要:机房降温性能直接影响机房的运行,我们通过构建三维模拟机房的方法探究空调出风对机房热点位置的影响,并根据机房热分布情况优化配置各机柜的任务量。我们小组的特色在于我们先使用Gambit网格制作软件画出了此机房,之后采用Fluent流体力学处理软件提供的simple算法对模拟机房的流场和温度场进行模拟,以便于形象的观察。我们使用该模型输出的模型采样点参数,运用函数拟合的思想,构建出风口风速与采样点风速的函数关系式,再结合题目给出的数据,得出合理的出风口风速。流场与温度场是相互独立的,在得出流场分布后,我们根据传热学知识,不断调整机柜热通量,模拟出合理的温度分布场。根据计算,在空调出风口风速相同的条件下,出风风速应为1.210m/s,如果考虑送风管道沿程阻力损失,各出风口组按0.8:0.9:0.9:1的出风量比例送风,则各出风口组风速应为1.156m/s,1.3005m/s,1.3005m/s,1.445m/s。温度方面,室内最高温度出现在机柜散热面某处,数值约为75摄氏度,室内空气热点温度为36摄氏度,位于冷通道远离空调端。(各通道流场、温度场分布图均在论文中给出)对于任务量的分配问题,参照温度场模拟结果,近回风孔端各通道散热能力相当,而在远回风孔端,冷通道排热能力较弱,所以任务量为0.5的两机柜应居中,0.8的两机柜分列两端这样可以降低热点温度,加强散热。《电子信息系统机房设计规范》C级要求控制机房温度,主机开机时机房温度为18-28°C,停机时为5-35°C。根据我们的模拟,机房开机时空调可以以1.5m/s的速度通入20°C的冷风;停机时,机房可以根据季节来选择空调是保温、待机还是制冷,从而合理利用能源。关键字:建模流速场温度场Simple算法出风风速热点优化2二、问题重述:问题背景:由于高密度计算、多任务计算的需要,越来越多的高性能数据中心或互联网中心(DC、IDC)正逐渐建成。在现代的数据中心内,由于刀片服务器成本与性价比高,体积小而被广泛使用。由于自身能源与冷却条件限制,这类大规模的数据中心或许每年需要花费数百万美元,主要用于计算设备及系统冷却所需的能源费用。因此有必要提高数据中心设备的能效,极大化数据中心的能源利用率及计算能力。大约在上世纪90年代后期,IBM、HP等公司首先提出绿色数据中心的概念,并受到世界各国的广泛重视。绿色数据中心的主要目标包括:最佳PUE(数据中心基础设施能源利用效率)实现实现动态智能制冷,精确送配风系统优化的场地设计、电气系统设计支持全球领先环保节能标准LEED(美国领先能源和环境设计规范)实现最佳系统部署区域化和模块化设计--高热区和低热区,采用不同的散热方式,实现对不同负载的有效支持。对大型数据中心,模块化设计理念。整合的智能的机房监控系统(动力设施,环境与IT设施,平台统一)实现自动化管理。绿色数据中心的设计在我国处于刚起步阶段,相关的工作很少,资源缺乏。作为绿色数据中心设计的一个重要环节是利用源自服务器及环境温度的数据,刻画数据中心的热循环过程。机房内热环境分析是绿色机房设计的主要步骤之一。为了保证机房内设备健康运行,数据中心制冷系统必须根据机房内热点的温度(室内最高温度)向机房送配冷气。而合理地给服务器分配工作任务,能够降低机房内热点的温度,达到节能目的。图1是较典型的一类数据中心机房虚拟示意图。图1虚拟机房示意图该类机房采用独立的空调通风制冷系统(HVAC),机房机柜的布置通常按一定的行业设计规范要求布置。相邻机柜的出风口面对同一个通道。形成热通道。机房内热气流经循环进入HVAC顶部,在经过水冷系统冷却后从地下冷风槽通过中孔板送入机柜进风口,形成冷通道。对于此类机房,往往由于机柜布置的不合理,以及各机柜服务器任务分配的不合理,造成机房内局部温度过高(形成热点)。为了保证服务器的健康工作,3通常需要HVAC降低送风温度或加大送风量,造成耗能增加。绿色数据中心的主要任务之一就是根据机房的基础设施状态,按照行业规范要求合理地布置机柜,分布任务,尽量避免局部地区过热。该问题数学上处理起来比较困难,图2是一个测试案例,部分测试数据见附件1及附件2。供你们队参考。图2测试机房虚拟示意图该测试机房高3.2米,,每个机柜群长6.4米,深0.8米,高2米,由8个同样的机柜组成,每个机柜由5个机架构成(共160个机架)。通道2与4是冷通道,空调制冷系统将冷气送到冷通道,各机柜的服务器从冷通道吸入冷气。通道1,3,5是热通道,服务器将热量排入热通道,再通过排风系统排出,循环进入空调顶部。机柜群与侧边墙距离1.6米,两个空调布置在冷通道的一端靠墙处。空调几何尺寸为宽1.8米,厚度为0.9米,高度为2米。回风孔位于空调顶部,几何尺寸约为0.5米乘1.4米。空调的进风风速与温度由机房室内温度与风速确定,送风温度为送风槽出口温度,风速不详。可以将机房近似看作封闭系统(一般情况下机房门不开的的,不允许人进出)。出风槽的宽度约为0.4米(冷通道宽度的三分之一),长度约为6.4米,孔隙率约为50%,与机柜并行排列。你们队需要解决的问题如下:(1)根据附件1的数据,绘出冷、热通道的热分布及流场分布及室内最高温度位置。(2)建立描述该问题热分布的数学模型及算法,并与测试案例进行比较。(3)如果定义该机房的总体任务量为1,根据你的模型及附件1的流场数据,确定服务器实际任务量为0.8及0.5的最优任务分配方案,并给出室内最高温度。(4)如果按照《电子信息系统机房设计规范》(附件3)C级要求控制机房温度,讨论服务器设计任务量一定条件下,如何控制空调的送风速度或送风温度(可以通过送风槽的出口风速与温度来描述)。三、模型假设及符号说明流体无粘性、不考虑空气边界层xy4机房出风槽有8个出风口,均匀在两个冷通道,出风风速相同,机柜散热面温度为50度,出风的冷风温度为24度机柜为铁制,导热系数40*1.163W/(m*K)三维机房的坐标以机房几何中心为原点,X、Y轴如题目所示,Z轴以竖直向上为正符号说明:M(i,j,k)表示附件一中某数据点的参数,如V(1,1,1)表示2通道距空调7.2m高0.3m的点的速度,即0.2m/s,T(2,3,5)表示3通道距空调2.4m高2.7m的点的温度,即29°C。四、问题分析及模型解决该问题必须要对整个机房的各点流速进行模拟,Fluent软件的simple算法为我们提供了便利,下面对Fluent建模要用到的simple算法进行一下介绍。1非耦合隐式算法(SegregatedSolver)该算法源于经典的SIMPLE算法。其适用范围为不可压缩流动和中等可压缩流动。这种算法不对Navier-Stoke方程联立求解,而是对动量方程进行压力修正。该算法是一种很成熟的算法,在应用上经过了很广泛的验证。这种方法拥有多种燃烧、化学反应及辐射、多相流模型与其配合,适用于低速流动的CFD模拟。2流体力学基本控制方程考虑三维直角坐标系,设流体的速度矢量----在三个坐标上的分量分别是u,v,w,压力为P,流体的密度为。这里u,v,w,P及都是空间坐标及时间的函数。根据质量守恒定律、动量守恒定律及能量守恒定律,我们得到如下的流体力学控制方程:连续性方程:¶r¶t+Ñ·(rU)=0动量方程:()uuUutx()vvUvty()wwUwtz能量方程:()TTkUTTStc5若考虑湍流运动,采用两方程模式,则还有湍流动能k方程和湍流动能耗散率方程:()()tkkUkkGt212()()tkcUGctkk这里1c和2c为经验常数。以上流体力学控制方程可表示为以下通用形式:()USt式中为通用变量,可以代表u、v、w、T等求解变量,为扩散系数。上式四项依次称为非定常项、对流项、扩散项和源项。3不可压缩流动求解的关键问题N—S方程是非线性的,其系数包含u、v、w等被求量,因而问题的数值求解要用到迭代法,不过这并不构成特殊的困难。动量方程数值求解中所遇到的主要困难是与一阶导数项ix的离散有关。第一个问题:如果采用方法建立网格,即将u、v、w和P均存于同一套网格节点上,则会遇到如下问题。以一维流动为例,稳态时有:22upuuxxx对于图I.I所示均匀网格,将上式中的各项均取中心差分,得差分方程为:1111112222()iiiiiiiiiuuppuuuudxdxdx该式表明,对i点的离散不包括ip,而是把被i点隔开的两邻点的压力联系了起来。于是会产生这样的问题:如果在流场迭代求解过程的某一层次上,在压力场的当前值加上一个锯齿状的压力波,如图1-1所示,则动量方程的离散形式无法把这一不合理的分量检测出来,而是会一直保留到迭代过程收敛并作为正确的压力场输出,如图1-1中虚线所示。6第二个问题:压力的一阶导数是以源项的形式出现在动量方程中。采用分离式求解各变量的离散方程时,由于压力没有独立的方程,压力与速度的关系隐含于连续性方程中,如果压力场是正确的,则据此压力场求得的速度场一定满足连续性方程。如何构造求解压力场的方程,或者说在假定初始压力分布后如何构造计算压力改进值的方程,就成了分离式求解法中的一个关键问题。上述两个关键问题都与压力梯度的离散及压力的求解有关,统称为压力与速度的耦合问题。如果数值解得出了波形压力场,则称为压力与速度间的失耦。为克服压力与速度之间的失耦,可以采用交错网格。为解决第二个问题即采用分离式求解方法时各类变量能同步地加以改进以提高收敛速度,就发展出了SIMPLE系列算法。图3一般网格计算产生的不真实解4交错网格及动量方程的离散为解决流场计算中的第一个关键问题,即让动量方程的离散形式能够检测出不合理的波形压力场,目前通用的方法是采用交错网格,这样动量方程中压力梯度的离散形式是以相邻两点间的压力差来表示的,因而获得合理的压力场。所谓交错网格就是把速度u,v及压力P(包括其它所有标量场及物性参数)分别存储于三套不同网格上的网格系统。如图1-2所示:速度U存于压力控制容积的东、西界面上,速度v存于压力控制容积的南、北界面上,U、v各自的控制容积则是以速度所在位置为中心的。u控制释积与主控制容积(即压力的控制容积)在x方向有半个步跃的错位,而v控制容积与主控制容积在Y方向有半个步长的错位,交错网格之名称由此而来。在交错网格系统中,关u、v的离散方程可通过对u、v各自的控制容积作积分而得出。这时压力梯度的离散形式对eu为()/Epppdx,对nv为()/Npppdy,亦即相邻两点间的压力差构成了/px、/py,这就从根本上解决了采用一般网格系统时所遇到的困难,这也是交错网格的成功之处。在交错网格中,一般变量的离散过程与通常有限体积法一样,将控制方程在主控7制容积上积分即可。但对动量方程而言.有一些新特点,其积分控制容积不是主控制容积而是u、v各自的控制容积,同时压力梯度项从源项中分离出来。例如对eu的控制容积积分得关于eu的离散方程为:()eenbnbpEauaubppdy其中nbu为eu的邻点速度,b为不包括压力在内的源项中的常数部分,系数nba的计算公式取决于采用的离散格式,如一阶迎风、二阶迎风或QUICK格式等。图4交错网格:(a)主控制容积(b)u控制容积(c)v控制容积类似地,对nv的控制容积作积分可得:()nnnbnbpNavaubppdx求解不可压缩流动的第二个关键问题是构造求解压力场的方程,或者是在假定了一个压力场后改进压力值得方程。其通常做法如下。1.假如一个压力场,记为p2.利用p,求解动量离散方程,得到相应的速度u,v3利用连续性方程改进
本文标题:3D机房建模论文
链接地址:https://www.777doc.com/doc-2920328 .html