您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 3-7第七节正弦定理余弦定理应用举例练习题(2015年高考总复习)
1第七节正弦定理、余弦定理应用举例时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akmB.3akmC.2akmD.2akm解析利用余弦定理解△ABC.易知∠ACB=120°,在△ACB中,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×-12=3a2,∴AB=3a.答案B2.张晓华同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是()A.22kmB.32km2C.33kmD.23km解析如图,由条件知AB=24×1560=6,在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,所以∠ASB=45°.由正弦定理知BSsin30°=ABsin45°,所以BS=ABsin45°sin30°=32.答案B3.轮船A和轮船B在中午12时离开海港C,两艘轮船航行方向的夹角为120°,轮船A的航行速度是25海里/小时,轮船B的航行速度是15海里/小时,下午2时两船之间的距离是()A.35海里B.352海里C.353海里D.70海里解析设轮船A、B航行到下午2时时所在的位置分别是E,F,则依题意有CE=25×2=50,CF=15×2=30,且∠ECF=120°,EF=CE2+CF2-2CE·CFcos120°=502+302-2×50×30cos120°=70.答案D4.(2014·济南调研)为测量某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是()3A.201+33mB.201+32mC.20(1+3)mD.30m解析如图所示,由已知可知,四边形CBMD为正方形,CB=20m,所以BM=20m.又在Rt△AMD中,DM=20m,∠ADM=30°,∴AM=DMtan30°=2033(m).∴AB=AM+MB=2033+20=201+33(m).答案A5.(2013·天津卷)在△ABC中,∠ABC=π4,AB=2,BC=3,则sin∠BAC=()A.1010B.105C.31010D.55解析由余弦定理AC2=AB2+BC2-2AB·BCcos∠ABC=(2)2+32-2×2×3×22=5,所以AC=5,再由正弦定理:sin∠BAC=4sin∠ABCAC·BC=3×225=31010.答案C6.(2014·滁州调研)线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始多少h后,两车的距离最小()A.6943B.1C.7043D.2解析如图所示,设th后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.因为AB=200,所以BD=200-80t,问题就是求DE最小时t的值.由余弦定理,得DE2=BD2+BE2-2BD·BEcos60°=(200-80t)2+2500t2-(200-80t)·50t=12900t2-42000t+40000.当t=7043时,DE最小.答案C二、填空题(本大题共3小题,每小题5分,共15分)57.已知A,B两地的距离为10km,B,C两地的距离为20km,现测得∠ABC=120°,则A、C两地的距离为________km.解析如右图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=107(km).答案1078.如下图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距82nmile.此船的航速是________nmile/h.解析设航速为vnmile/h在△ABS中,AB=12v,BS=82,∠BSA=45°,由正弦定理得:82sin30°=12vsin45°,6∴v=32(nmile/h).答案329.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.解析在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,BCsin45°=CDsin30°,BC=CDsin45°sin30°=102(米).在Rt△ABC中,tan60°=ABBC,AB=BCtan60°=106(米).答案106三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处于坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?7解在△BCD中,∠BDC=45°,∠CBD=30°,CD=106,由正弦定理,得BC=CDsin45°sin30°=203.在Rt△ABC中,AB=BCsin60°=203×32=30(米),所以升旗速度v=ABt=3050=0.6(米/秒).11.如图,A、B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?解由题意,知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,8∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理,得DBsin∠DAB=ABsin∠ADB,于是DB=AB·sin∠DABsin∠ADB=53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203(海里),在△DBC中,由余弦定理,得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1200-2×103×203×12=900.得CD=30(海里),故需要的时间t=3030=1(小时),即救援船到达D点需要1小时.12.(2013·江苏卷)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘9缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130m/min,山路AC长为1260m,经测量,cosA=1213,cosC=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解(1)在△ABC中,因为cosA=1213,cosC=35,所以sinA=513,sinC=45.从而sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=513×35+1213×45=6365.由正弦定理ABsinC=ACsinB,得AB=ACsinB×sinC=12606365×45=1040(m).所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×1213=200(37t2+70t+50),10因0≤t≤1040130,即0≤t≤8,故当t=3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BCsinA=ACsinB,得BC=ACsinB×sinA=12606365×513=500(m).乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710m才能到达C.设乙步行的速度为vm/min,由题意得-3≤500v-71050≤3,解得125043≤v≤62514,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[125043,62514](单位:m/min)范围内.
本文标题:3-7第七节正弦定理余弦定理应用举例练习题(2015年高考总复习)
链接地址:https://www.777doc.com/doc-2926510 .html