您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2014高考调研理科数学课时作业讲解_课时作业38
课时作业(三十八)1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项之和为()A.2n-1B.n·2n-nC.2n+1-nD.2n+1-n-2答案D解析记an=1+2+22+…+2n-1=2n-1,∴Sn=2·2n-12-1-n=2n+1-2-n.2.数列{an}、{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10项之和为()A.13B.512C.12D.712答案B解析bn=1an=1n+1n+2=1n+1-1n+2,S10=b1+b2+b3+…+b10=12-13+13-14+14-15+…+111-112=12-112=512.3.已知等差数列公差为d,且an≠0,d≠0,则1a1a2+1a2a3+…+1anan+1可化简为()A.nda1a1+ndB.na1a1+ndC.da1a1+ndD.n+1a1[a1+n+1d]答案B解析∵1anan+1=1d(1an-1an+1),∴原式=1d(1a1-1a2+1a2-1a3+…+1an-1an+1)=1d(1a1-1an+1)=na1·an+1,选B.4.设直线nx+(n+1)y=2(n∈N*)与两坐标轴围成的三角形面积为Sn,则S1+S2+…+S2013的值为()A.20102011B.20112012C.20122013D.20132014答案D解析直线与x轴交于(2n,0),与y轴交于(0,2n+1),∴Sn=12·2n·2n+1=1nn+1=1n-1n+1.∴原式=(1-12)+(12-13)+…+(12013-12014)=1-12014=20132014.5.(2012·全国)已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1anan+1}的前100项和为()A.100101B.99101C.99100D.101100答案A解析S5=5a1+a52=5a1+52=15,∴a1=1.∴d=a5-a15-1=5-15-1=1.∴an=1+(n-1)×1=n.∴1anan+1=1nn+1=1n-1n+1.设{1anan+1}的前n项和为Tn.则T100=11×2+12×3+…+1100×101=1-12+12-13+…+1100-1101=1-1101=100101.6.(1002-992)+(982-972)+…+(22-12)=____________.答案5050解析原式=100+99+98+97+…+2+1=100×100+12=5050.7.Sn=122-1+142-1+…+12n2-1=________.答案n2n+1解析通项an=12n2-1=12n-12n+1=12(12n-1-12n+1),∴Sn=12(1-13+13-15+…+12n-1-12n+1)=12(1-12n+1)=n2n+1.8.某医院近30天每天因患甲流而入院就诊的人数依次构成数列{an},已知a1=1,a2=2,且满足an+2-an=1+(-1)n(n∈N*),则该医院30天内因患甲流而入院就诊的人数共有______.答案255解析当n为偶数时,由题易得an+2-an=2,此时为等差数列;当n为奇数时,an+2-an=0,此时为常数列,所以该医院30天内因患甲流而入院就诊的人数总和为S30=15+15×2+15×142×2=255.9.数列{an}的前n项和为Sn=10n-n2,求数列{|an|}的前n项和.答案Tn=-n2+10nn≤5,n2-10n+50n≥6解析易求得an=-2n+11(n∈N*).令an≥0,得n≤5;令an<0,得n≥6.记Tn=|a1|+|a2|+…+|an|,则:(1)当n≤5时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=10n-n2.(2)当n≥6时,Tn=|a1|+|a2|+…+|an|=a1+a2+a3+a4+a5-a6-a7-…-an=2(a1+a2+a3+a4+a5)-(a1+a2+a3+a4+a5+a6+…+an)=2S5-Sn=n2-10n+50.综上,得Tn=-n2+10nn≤5,n2-10n+50n≥6.10.已知数列{an}满足a1=1,a2=4,an+2+2an=3an+1,n∈N*.(1)求数列{an}的通项公式;(2)记数列{an}的前n项和Sn,求使得Sn21-2n成立的最小整数n.解析(1)由an+2+2an-3an+1=0,得an+2-an+1=2(an+1-an).∴数列{an+1-an}是以a2-a1=3为首项,公比为2的等比数列.∴an+1-an=3·2n-1.∴当n≥2时,an-an-1=3·2n-2,an-1-an-2=3·2n-3,…,a3-a2=3×2,a2-a1=3.累加得an-a1=3·2n-2+…+3×2+3=3(2n-1-1).∴an=3·2n-1-2,又当n=1时,也满足上式,∴数列{an}的通项公式为an=3·2n-1-2,n∈N*.(2)由(1)利用分组求和法,得Sn=3(2n-1+2n-2+…+2+1)-2n=3(2n-1)-2n.由Sn=3(2n-1)-2n21-2n,得3·2n24,即2n8.∴n3,∴使得Sn21-2n成立的最小整数n=4.11.已知数列{an}满足a1=1,an0,Sn是数列{an}的前n项和,对任意的n∈N*,有2Sn=2a2n+an-1.(1)求数列{an}的通项公式;(2)记bn=an2n,求数列{bn}的前n项和Tn.解析(1)2Sn=2a2n+an-1,2Sn+1=2a2n+1+an+1-1,两式相减,得2an+1=2(an+1-an)(an+1+an)+(an+1-an).∴(an+1+an)(2an+1-2an-1)=0.∵an0,∴2an+1-2an-1=0.∴an+1=an+12.∴数列{an}是以1为首项,12为公差的等差数列.∴an=n+12.(2)bn=an2n=n+12n+1,则Tn=222+323+424+…+n+12n+1,①12Tn=223+324+425+…+n+12n+2.②①-②得12Tn=222+123+124+125+…+12n+1-n+12n+2=12+123×1-12n-11-12-n+12n+2=34-12n+1-n+12n+2.所以Tn=32-12n-n+12n+1=32-n+32n+1.12.已知数列{an}为等比数列.Tn=na1+(n-1)a2+…+an,且T1=1,T2=4.(1)求{an}的通项公式;(2)求{Tn}的通项公式.解析(1)T1=a1=1,T2=2a1+a2=2+a2=4,∴a2=2.∴等比数列{an}的公比q=a2a1=2.∴an=2n-1.(2)方法一Tn=n+(n-1)·2+(n-2)·22+…+1·2n-1,①2Tn=n·2+(n-1)22+(n-2)23+…+1·2n,②②-①,得Tn=-n+2+22+…+2n-1+2n=-n+21-2n1-2=-n+2n+1-2=2n+1-n-2.方法二设Sn=a1+a2+…+an,∴Sn=1+2+…+2n-1=2n-1.∴Tn=na1+(n-1)a2+…+2an-1+an=a1+(a1+a2)+…+(a1+a2+…+an)=S1+S2+…+Sn=(2-1)+(22-1)+…+(2n-1)=(2+22+…+2n)-n=21-2n1-2-n=2n+1-n-2.13.设数列{an}是公差大于0的等差数列,a3,a5分别是方程x2-14x+45=0的两个实根.(1)求数列{an}的通项公式;(2)设bn=an+12n+1,求数列{bn}的前n项和Tn.解析(1)因为方程x2-14x+45=0的两个根分别为5、9,所以由题意可知a3=5,a5=9,所以d=2,所以an=a3+(n-3)d=2n-1.(2)由(1)可知,bn=an+12n+1=n·12n,∴Tn=1×12+2×122+3×123+…+(n-1)×12n-1+n·12n.①∴12Tn=1×122+2×123+…+(n-1)×12n+n·12n+1.②①-②,得12Tn=12+122+123+…+12n-1+12n-n·12n+1=1-n+22n+1,所以Tn=2-n+22n.1.(2012·课标全国)数列{an}满足an+1+(-1)nan=2n-1,则{an}前60项和________.答案1830解析当n=2k时,a2k+1+a2k=4k-1;当n=2k-1时,a2k-a2k-1=4k-3.∴a2k+1+a2k-1=2,∴a2k+3+a2k+1=2.∴a2k-1=a2k+3.∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=30×3+1192=30×61=1830.2.(2011·辽宁理)已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列{an2n-1}的前n项和.解析(1)设等差数列{an}的公差为d,由已知条件可得a1+d=0,2a1+12d=-10,解得a1=1,d=-1.故数列{an}的通项公式为an=2-n.(2)设数列{an2n-1}的前n项和为Sn,即Sn=a1+a22+…+an2n-1,故S1=1,Sn2=a12+a24+…+an2n.所以,当n1时,Sn2=a1+a2-a12+…+an-an-12n-1-an2n=1-(12+14+…+12n-1)-2-n2n=1-(1-12n-1)-2-n2n=n2n.所以Sn=n2n-1.综上,数列{an2n-1}的前n项和Sn=n2n-1.3.(2011·全国新课标)等比数列{an}的各项均为正数,且2a1+3a2=1,a23=9a2a6.(1)求数列{an}的通项公式;(2)设bn=log3a1+log3a2+…+log3an,求数列{1bn}的前n项和.解析(1)设数列{an}的公比为q.由a23=9a2a6,得a23=9a24.所以q2=19.由条件可知q0,故q=13.由2a1+3a2=1,得2a1+3a1q=1,得a1=13.故数列{an}的通项公式为an=13n.(2)bn=log3a1+log3a2+…+log3an=-(1+2+…+n)=-nn+12.故1bn=-2nn+1=-2(1n-1n+1).1b1+1b2+…+1bn=-2[(1-12)+(12-13)+…+(1n-1n+1)]=-2nn+1.所以数列{1bn}的前n项和为-2nn+1.4.已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1.(1)求数列{an}的通项公式;(2)设bn=12-logpan(n∈N*),数列{bnbn+2}的前n项和为Tn,求证:Tn34.解析(1)由题意知(p-1)a1=p2-a1,解得a1=p.由p-1Sn=p2-an,p-1Sn+1=p2-an+1,得(p-1)(Sn+1-Sn)=an-an+1.所以(p-1)an+1=an-an+1,即an+1=1pan.可见,数列{an}是首项为a1=p,公比为1p的等比数列,故an=p(1p)n-1=p2-n.(2)∵bn=12-logpp2-n=12-2-n=1n,∴bnbn+2=1nn+2=12(1n-1n+2).∴Tn=b1b3+b2b4+b3b5+…+bnbn+2=12[(11-13)+(12-14)+(13-15)+(14-16)+…+(1n-1n+2)]=12(1+12-1n+1-1n+2)34.5.(2011·山东理)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第
本文标题:2014高考调研理科数学课时作业讲解_课时作业38
链接地址:https://www.777doc.com/doc-2942360 .html