您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2015-2016学年人教B版高中数学课件必修3第二章统计1.2《系统抽样》
2.1随机抽样2.1.2系统抽样本课主要学习系统抽样的相关内容,具体包括系统抽样的概念、特点及一般步骤。因此本课开始回顾了简单随机抽样的概念、特点以及抽样法和随机数表法的一般步骤,并用一个习题加深理解。接着以一个抽样的案例作为课前导入,处理案例的过程中引入系统抽样的方法,引出系统抽样的概念,并具体介绍系统抽样的特点和适用范围。紧接着以五个问题带领学生探索系统抽样的一般步骤,对一般步骤进行总结,并通过一个例题加深理解。最后通过一系列例题及习题对内容进行加深巩固。1.正确理解系统抽样的概念。2.掌握系统抽样的一般步骤。3.正确理解系统抽样与简单随机抽样的区别及适用范围。抽签法2.简单随机抽样的方法:随机数表法复习一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。1.简单随机抽样的概念适用范围:总体中个体数较少的情况,抽取的样本容量也较小时。抽签法:编号;制签;搅匀;抽签;取个体。3.具体步骤:随机数表法:编号;选数;读数;取个体。下面的抽样方法是简单随机抽样吗?为什么?①某班45名同学,指定个子最高的5名学生参加学校组织的某项活动;②从20个零件中一次性抽取3个进行质量检查;③一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿一件,连续玩了5件。判断的依据:简单随机抽样的特点①总体的个数有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样。是请问:应该怎样抽样?实例为了了解高二年级1000名同学的视力情况,从中抽取100名同学进行检查。当总体的个体数较多时,采用简单随机抽样太麻烦,这时将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为等距抽样)。系统抽样的特点:(2)系统抽样适用于总体中个体数较多,抽取样本容量也较大时;(3)系统抽样是不放回抽样。(1)用系统抽样抽取样本时,每个个体被抽到的可能性是相等的,个体被抽取的概率等于Nn下列抽样中不是系统抽样的是()A、从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样;B、工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验;C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈。C①用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号.②用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?分为n段;每段号码数是总体中的个体数N除以样本容量n所得的商.③如果N不能被n整除怎么办?④将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?从总体中随机剔除N除以n的余数个个体后再分段.k值为总体中的个体数N除以样本容量n所得的商.⑤用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.系统抽样的操作步骤系统抽样的步骤:①采用随机的方式将总体中的N个体编号。③在第一段用简单随机抽样确定起始的个体编号l;④按照事先确定的规则抽取样本(通常是将l加上间隔k,得到第2个编号l+k,第3个编号l+2k,这样继续下去,直到获取整个样本)。②整个的编号分段(即分成几个部分),要确定分段的间隔k。当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N,能被n整除,这时k=;NnNnNn'Nn简记为:编号;分段;在第一段确定起始号;加间隔获取样本例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查;①用什么方法获取样本比较方便?②具体怎样操作?①系统抽样②我们按照下面的步骤进行抽样:第一步:将这500名学生从1开始进行编号;第二步:确定分段间隔k,对编号进行分段.由于k=500/50=10,这个间隔可以定为10;第三步:从号码为1~10的第一个间隔中用简单随机抽样的方法确定第一个个体编号,假如为6号;第四步:从第6号开始,每隔10个号码抽取一个,得到6,16,26,36,…,496.这样就得到一个样本容量为50的样本.②从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()A.99B、99.5C.100D、100.5C①某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是抽样方法。系统③从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25B、3,13,23,33,43C、1,2,3,4,5D、2,4,6,16,32B⑤某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。解:样本容量为295÷5=59.确定分段间隔k=5,将编号分段1~5,6~10,…,291~295;采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,如确定编号为3的学生,依次取出的学生编号为3,8,13,…,288,293,这样就得到一个样本容量为59的样本.④采用系统抽样的方法,从个体数为1003的总体中抽取一个容量50的样本,则在抽样过程中,被剔除的个体数为(),抽样间隔为()。320将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为等距抽样)。1.系统抽样的概念2.系统抽样操作办法:系统抽样适合于总体的个体数较多的情形,操作上分四个步骤进行:编号;分段;在第一段确定起始号;加间隔获取样本。除了剔除余数个体和确定起始号需要随机抽样外,其余样本号码由事先定下的规则自动生成,从而使得系统抽样操作简单、方便.。3.系统抽样与简单随机抽样比较,有何优、缺点?(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样的效果会受个体编号的影响,而简单随机抽样的效果不受个体编号的影响;系统抽样所得样本的代表性和具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.例如学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取的样本就可能会是全部男生或全部女生.(3)系统抽样比简单随机抽样的应用范围更广.Thankyou!
本文标题:2015-2016学年人教B版高中数学课件必修3第二章统计1.2《系统抽样》
链接地址:https://www.777doc.com/doc-2942566 .html