您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年安徽省淮南市高二(上)期末数学试卷(理科)(解析版)
2015-2016学年安徽省淮南市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分)1.抛物线y=﹣8x2的准线方程是()A.y=B.y=2C.x=D.y=﹣2【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程.【解答】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.2.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B.C.D.【考点】向量在几何中的应用.【专题】数形结合;数形结合法;平面向量及应用.【分析】===.【解答】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.3.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)【考点】椭圆的定义.【专题】计算题.【分析】先把椭圆方程整理成标准方程,进而根据椭圆的定义可建立关于k的不等式,求得k的范围.【解答】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.4.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80B.40C.60D.20【考点】分层抽样方法.【专题】概率与统计.【分析】要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.【解答】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.5.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A.<,乙比甲成绩稳定B.<,甲比乙成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定【考点】茎叶图;众数、中位数、平均数.【专题】概率与统计.【分析】根据平均数的公式进行求解,结合数据分布情况判断稳定性【解答】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.6.方程(x2﹣4)2+(y2﹣4)2=0表示的图形是()A.两个点B.四个点C.两条直线D.四条直线【考点】二元二次方程表示圆的条件.【专题】直线与圆.【分析】通过已知表达式,列出关系式,求出交点即可.【解答】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.7.如图,程序框图的运算结果为()A.6B.24C.20D.120【考点】程序框图.【专题】对应思想;综合法;算法和程序框图.【分析】由已知可知该程序循环变量n的初值为1,终值为4,根据S=S×n可知:S=1×2×3×4,进而得到答案.【解答】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.8.下列命题中的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=﹣1”是“x2+5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1>0”D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题【考点】命题的真假判断与应用;四种命题;必要条件、充分条件与充要条件的判断.【专题】对应思想;定义法;简易逻辑.【分析】A.根据否命题的定义进行判断.B.根据充分条件和必要条件的定义进行判断.C.根据逆命题的定义进行判断.D.根据逆否命题的真假性关系进行判断.【解答】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.9.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A.B.(4+π)C.D.【考点】由三视图求面积、体积.【专题】计算题.【分析】几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,做出圆锥的高,根据圆锥和圆柱的体积公式得到结果.【解答】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.10.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2B.C.D.4【考点】双曲线的简单性质;椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】根据双曲线和椭圆的性质和关系,结合余弦定理和柯西不等式即可得到结论.【解答】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e2=时取等号.即取得最大值且为.故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.二、填空题(共5小题,每小题4分)11.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是2.【考点】极差、方差与标准差.【专题】概率与统计.【分析】由已知条件先求出x的值,再计算出此组数据的方差,由此能求出标准差.【解答】解:∵一组数据2,x,4,6,10的平均值是5,∴2+x+4+6+10=5×5,解得x=3,∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.12.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是(1,+∞).(用区间表示)【考点】特称命题.【专题】不等式的解法及应用;简易逻辑.【分析】根据题意,写出命题p的否定命题,利用p与¬p真假相反得到¬p为真命题,再应用判别式求出a的取值范围.【解答】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.【考点】椭圆的简单性质;等差数列的性质.【专题】计算题.【分析】由题意可得,2b=a+c,平方可得4b2=a2+2ac+c2结合b2=a2﹣c2可得关于a,c的二次方程,然后由及0<e<1可求【解答】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题14.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.【考点】异面直线及其所成的角.【专题】计算题.【分析】先通过平移将两条异面直线平移到同一个起点B1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【解答】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.15.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1②y=2③y=x④y=2x+1是“单曲型直线”的是①②.【考点】双曲线的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知点P在以M、N为焦点的双曲线的右支上,即,(x>0).分别与①②③④中的直线联立方程组,根据方程组的解的性质判断该直线是否为“单曲型直线”.【解答】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y得x2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.三、解答题(共5大题)16.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.【考点】用样本的频率分布估计总体分布;频率分布直方图.【专题】概率与统计.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3
本文标题:2015-2016学年安徽省淮南市高二(上)期末数学试卷(理科)(解析版)
链接地址:https://www.777doc.com/doc-2942597 .html