您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2015创新设计(高中理科数学)题组训练7-1
第1讲空间几何体的结构及其三视图和直观图基础巩固题组(建议用时:40分钟)一、选择题1.一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱解析A,B两选项中侧棱与底面不一定垂直,D选项中底面四边形不一定为正方形,故选C.答案C2.(2014·福州模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为().解析给几何体的各顶点标上字母,如图1.A,E在侧投影面上的投影重合,C,G在侧投影面上的投影重合,几何体在侧投影面上的投影及把侧投影面展平后的情形如图2所示,故正确选项为B(而不是A).答案B3.下列几何体各自的三视图中,有且仅有两个视图相同的是().A.①②B.①③C.①④D.②④解析正方体的三视图都是正方形,不合题意;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱台的正视图和侧视图、俯视图各不相同,不合题意;正四棱锥的正视图和侧视图都是三角形,而俯视图是正方形,符合题意,所以②④正确.答案D4.(2013·汕头二模)如图,某简单几何体的正视图和侧视图都是边长为1的正方形,且其体积为π4,则该几何体的俯视图可以是().解析若该几何体的俯视是选项A,则其体积为1,不满足题意;由正视图、侧视图可知俯视图不可能是B项;若该几何体的俯视图是选项C,则其体积为12,不符合题意;若该几何体的俯视图是选项D,则其体积为π4,满足题意.答案D5.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为().解析空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.答案C二、填空题6.利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号).①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.解析①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.答案①②④7.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析显然,三棱锥、圆锥的正视图可以是三角形;三棱柱的正视图也可以是三角形(把三棱柱放倒,使一侧面贴在地面上,并让其底面面对我们,如图所示);只要形状合适、摆放适当(如一个侧面正对着观察者的正四棱锥),四棱锥的正视图也可以是三角形(当然,不是任意摆放的四棱锥的正视图都是三角形),即正视图为三角形的几何体完全有可能是四棱锥;不论四棱柱、圆柱如何摆放,正视图都不可能是三角形(可以验证,随意摆放的任意四棱柱的正视图都是四边形,圆柱的正视图可以是圆或四边形).综上所述,应填①②③⑤.答案①②③⑤8.如图,用斜二测画法得到四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.解析作DE⊥AB于E,CF⊥AB于F,则AE=BF=ADcos45°=1,∴CD=EF=3.将原图复原(如图),则原四边形应为直角梯形,∠A=90°,AB=5,CD=3,AD=22,∴S四边形ABCD=12×(5+3)×22=82.答案82三、解答题9.如图所示的是一个零件的直观图,试画出这个几何体的三视图.解这个几何体的三视图如图.10.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解(1)正六棱锥.(2)其侧视图如图:其中AB=AC,AD⊥BC,且BC的长是俯视图中的正六边形对边的距离,即BC=3a,AD的长是正六棱锥的高,即AD=3a,∴该平面图形的面积S=123a·3a=32a2.(3)V=13×6×34a2×3a=32a3.能力提升题组(建议用时:25分钟)一、选择题1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是().A.球B.三棱锥C.正方体D.圆柱解析球的正视图、侧视图和俯视图均为圆,且形状相同、大小相等;三棱锥的正视图、侧视图和俯视图可以为全等的三角形;正方体的正视图、侧视图和俯视图可以为形状相同、大小相等的正方形;圆柱的正视图、侧视图均为矩形,俯视图为圆.答案D2.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于().A.24a2B.22a2C.22a2D.223a2解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积等于a224=22a2.答案B二、填空题3.如图所示,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(填序号).解析由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.答案②③三、解答题4.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解(1)直观图如图所示:(2)根据三视图间的关系可得BC=23,∴侧视图中VA=42-23×32×232=23,∴S△VBC=12×23×23=6.
本文标题:2015创新设计(高中理科数学)题组训练7-1
链接地址:https://www.777doc.com/doc-2944758 .html