您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 2016测量平差实习报告
误差理论与测量平差基础(MATLAB)1误差理论与测量平差基础(MATLAB)实习报告学号:姓名:班级:1420501Z专业:测绘工程课程名称:误差理论与测量平差基础任课老师:2016年5月误差理论与测量平差基础(MATLAB)2一.水准网间接平差1.列出误差方程设P1和P2点高程平差值为和,相应的近似值取为按已知数据及观测数据表列出观测方程后,将有关观测数据带入即得误差方程V1=V2=V3=V4=V5=V6=式中常数项以m为单位。2.列出权函数式P1至P2间高差平差值的权函数式为3.组成法方程以1km水准测量的观测高差为单位权观测值,各观测值互相独立,定权式为Pi=1/Si,得权阵为p=0.90910000000.58820000000.43480000000.37040000000.41670误差理论与测量平差基础(MATLAB)3000000.2500由此组成法方程为NBB-1=0.53070.16080.16080.77584.计算VV=5.精度评定单位权中误差P1,P2点高程中误差P1至P2点高差平差值中误差6.MATLAB解算过程function[v,ch,cx]=szw(s,h,B,x0,d,n,t,f)%改正数,高差中误差,高程中误差p=diag(1./s);%定义权阵l=h-B*x0-d;W=B'*p*l;Nbb=B'*p*B;x=(inv(Nbb))*W;disp('改正数')v=B*x-l;%改正数disp(v);c0=sqrt((v'*p*v)/(n-t));%单位中误差Nbb=B'*p*B;Qh=f*(inv(Nbb))*f';%h5的协因数阵disp('高差平差值中误差')ch=c0*sqrt(Qh);%高差平差值中误差disp(ch);误差理论与测量平差基础(MATLAB)4Nbbn=inv(Nbb);%求逆矩阵disp('高程平差值中误差')cx=c0*sqrt(diag(Nbbn));%高程平差值中误差disp(cx);returnloadB.txt;loadd.txt;loads.txt;loadx0.txt;loadh.txt;loadn.txt;loadt.txtloadf.txt[v,ch,cx]=szw(s,h,B,x0,d,n,t,f);计算结果展示二.导线网间接平差本题n=7,既有7个误差方程,其中有4个角度误差方程,3个边长误差方程。必要观测数t=4。现选取待定点坐标平差值为参数,即误差理论与测量平差基础(MATLAB)51.计算待定点近似坐标根据坐标正算公式,算得E,F俩点的近似坐标XE0=203046.366YE0=-59253.0948XF0=203071.813YF0=-59451.60042列出误差方程3.确定边和角的权已知测角中误差,则角度观测值的权为各导线边的权为P=0.487900000000.499700000000.289700000001.000000000001.000000000001.000000000001.00004.计算边长和角度误差方程系数和常数项,V列为边长和角度改正数,在解出坐标改正数后给出误差理论与测量平差基础(MATLAB)65.法方程的组成和解算NBB*x-BT*P*L=0x=NBB-1*BT*P*L6.平差值计算(1)坐标平差值将坐标改正数加上近似值,即得平差值(2)观测值的平差值将改正数与观测值相加,即得观测量的平差值7.精度计算(1)单位权中误差(2)待定点点位中误差由NBB-1中可得未知数的权倒数(3)各点位中误差为8.MATLAB解算过程loadn.txt%观测总数loadt.txt%必要观测数loaddws.txt%导入点位数loadcsgs.txt%导入参数个数loadbs.txt%导入待测边数loaddcdh1.txt%%第一个待测点号loadx1y1.txt%导入已知点位一的坐标loadxydws.txt%导入末点位的坐标loaddeg.txt%导入由观测角计算而得的方位角loads.txt%导入边长观测值loadgcj.txt%各点位观测角digits(12);误差理论与测量平差基础(MATLAB)7digits(15);x1=x1y1(1,1);y1=x1y1(1,2);x0=zeros(dws,1);y0=zeros(dws,1);a=zeros(1,3);x0(1)=x1;y0(1)=y1;fori=2:(dws-1)a=deg(i-1,:);[x2,y2]=zbzs(x1,y1,s(i-1),a);x1=x2;y1=y2;x0(i)=x1;y0(i)=y1;endx1=xydws(1,1);y1=xydws(1,2);x0(dws)=x1;%各点位x的近似值y0(dws)=y1;%各点位y的近似值s0=zeros(dws-1,1);%各各点位之间距离的近似值fori=1:(dws-1)s0(i)=sqrt((x0(i)-x0(i+1)).^2+(y0(i)-y0(i+1)).^2);end[B1,L1]=jsB1L1(x0,y0,s0,s,bs,dcdh1,csgs);[B2,L2,ajs]=jsB2L2(x0,y0,s0,dws,dcdh1,csgs,gcj,bs);B=[B1;B2];L=[L1;L2];juw=5;%测角中误差buw=0.5*sqrt(s');%测边中误差P=zeros(1,length(gcj));fori=1:length(gcj)P(i)=1./(juw.^2);endP=[1./(buw.^2),P];P=diag(P)*(juw.^2);NBB=B'*P*B;W=B'*P*L;x=pinv(NBB)*W;disp('[xEyExFyF]=')disp(x)X=zeros(1,length(x));X=[x(1)+x0(2)x(2)+y0(2)x(3)+x0(3)x(4)+y0(3)];disp('E点坐标平差值=')disp(X(1,1:2))disp('F点坐标平差值=')误差理论与测量平差基础(MATLAB)8disp(X(1,3:4))V=B*x-L;uwef=zwc(V,P,n,t,B);%各点位精度disp('点位精度uweuwf=')disp(uwef)disp('各观测量改正数[Vb1Vb2Vb3Vb4Vj1Vj2Vj3]=')disp(V)spcz=s+V(1:3,1);%边长观测值平差值disp('边长观测平差值S1S2S3=')disp(spcz)gcjpcz=gcj+V(4:7,1);disp('角度观测平差值J1J2J3J4=')disp(gcjpcz)functionA=deg2rad(a)%角度转弧度A=a*[pi/180;pi/10800;pi/648000];Returnfunction[x2,y2]=zbzs(x1,y1,s,a)%坐标正算A=deg2rad(a);x2=x1+s*cos(A);y2=y1+s*sin(A);Returnfunction[B1,L1]=jsB1L1(x0,y0,s0,s,bs,dcdh1,csgs)%计算边长系数矩阵BB1=zeros(bs,2*(bs+1));L1=s-s0;fori=1:bsk=1;forj=1+2*(i-1):2:(2*csgs+2*(i-1))B1(i,j)=(x0(i+1)-x0(i))*(-1)^k./L1(i);B1(i,j+1)=(y0(i+1)-y0(i))*(-1)^k./L1(i);k=k+1;endendB1=B1(1:bs,2*dcdh1-1:2*dcdh1-2+2*csgs);returnfunction[B2,L2,ajs]=jsB2L2(x0,y0,s0,dws,dcdh1,csgs,gcj,bs)%计算角度的系数矩阵B2=zeros(dws,2*dws);axs=zeros(dws+1,4);fori=2:dwsaxs(i,1)=3600*(y0(i)-y0(i-1))./(s0(i-1).^2);axs(i,2)=-3600*(x0(i)-x0(i-1))./(s0(i-1).^2);axs(i,3)=3600*(y0(i)-y0(i-1))./(s0(i-1).^2);误差理论与测量平差基础(MATLAB)9axs(i,4)=-3600*(x0(i)-x0(i-1))./(s0(i-1).^2);endfori=1:dwsifi==1B2(i,1:4)=axs(i,:)+axs(i+1,:);elseifi==dwsB2(i,2*dws-3:2*dws)=axs(i,:)+axs(i+1,:);elseB2(i,1+2*(i-2):4+2*(i-2))=axs(i,:);B2(i,1+2*(i-1):4+2*(i-1))=B2(i,1+2*(i-1):4+2*(i-1))+axs(i+1,:);endendendB2=B2(1:dws,2*dcdh1-1:2*dcdh1-2+2*csgs);ajs=zeros(bs+2,1);ajs(1)=46.74972222;fori=2:bs+1ajs(i)=atan((y0(i-1)-y0(i))./(x0(i-1)-x0(i)))*180./pi;%近似方位角endajs(bs+2)=144.7675;L2=zeros(bs+1,1);fori=1:bs+1L2(i)=gcj(i)-180+ajs(i)-ajs(i+1);ifL2(i)90L2(i)=L2(i)-180;elseifL2(i)-90L2(i)=L2(i)+180;endendReturnfunction[vs,cx]=gzs(B,L,P)%求观测值的改正数及坐标参数的改正数W=B'*P*L;Nbb=B'*P*B;cx=(pinv(Nbb))*W;vs=B*cx-L;returnfunctionuwef=zwc(v,P,n,t,B)%计算点位精度uw0=sqrt(v'*P*v/(n-t));Qxx=pinv(B'*P*B);Qxx=diag(Qxx);uwef=sqrt(uw0.^2*[(Qxx(1)+Qxx(2));(Qxx(3)+Qxx(4))]);return误差理论与测量平差基础(MATLAB)10计算结果展示三.三角网间接平差本题n=18,既有25个误差方程,其中有18个角度误误差理论与测量平差基础(MATLAB)11差方程,7个边长误差方程。必要观测数t=4。现选取待定点坐标平差值为参数,即1.计算待定点P1和P2的近似坐标X10=13188.647mX20=15578.522mY10=37335.251mY20=44390.957m根据已知点的坐标和待定点的近似坐标反算各边的近似坐标角2.计算与待定点P1和P2相连各边的坐标方位角改正数方程的系数和常数项2.46001.3200000-3.15001.50000000.2900-3.49000002.6200-0.8900-2.62000.8900000-0.33003.4700000-2.4500-1.30000003.2000-1.30000误差理论与测量平差基础(MATLAB)123.计算观测角误差方程系数和常数项-5.61000.1800000.20002.46001.3200000.60003.1500-1.500000-3.100000-3.53004.77000.9000000.3300-3.47000.5000003.2000-1.3000-2.600000-2.4500-1.30003.1000005.65000-8.500000-3.20001.30001.90002.6200-0.8900-2.2900-2.58001.2000-2.4600-1.3200-0.33003.4700-2.9000-0.16002.21002.6200-0.89003.3000-2.62000.89000.1700-2.19004.00002.33002.600
本文标题:2016测量平差实习报告
链接地址:https://www.777doc.com/doc-2946382 .html