您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 2017高考物理一轮复习第5章机械能基础课时15功能关系能量守恒定律(含解析)
1基础课时15功能关系能量守恒定律一、单项选择题1.(2016·江苏宿迁一模)运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力对系统始终做负功B.系统受到的合外力始终向下C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等解析运动员无论是加速下降还是减速下降,阻力始终阻碍系统的运动,所以阻力对系统始终做负功,故选项A正确;运动员加速下降时系统所受的合外力向下,减速下降时系统所受的合外力向上,故选项B错误;由WG=-ΔEp知,运动员下落过程中重力始终做正功,系统重力势能减少,故选项C错误;运动员在加速下降和减速下降的过程中,任意相等时间内所通过的位移不一定相等,所以任意相等时间内重力做的功不一定相等,故选项D错误。答案A2.如图1所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止。现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度。在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是()图1A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加解析在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将2反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误。答案B3.(2016·山西太原一模)将小球以10m/s的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能Ek、重力势能Ep与上升高度h间的关系分别如图中两直线所示。取g=10m/s2,下列说法正确的是()图2A.小球的质量为0.2kgB.小球受到的阻力(不包括重力)大小为0.2NC.小球动能与重力势能相等时的高度为2013mD.小球上升到2m时,动能与重力势能之差为0.5J解析在最高点,h=4m,Ep=mgh=4J,得m=0.1kg,A项错误;由除重力以外其他力做功W其他=ΔE可知,-fh=E高-E低,E为机械能,解得f=0.25N,B项错误;设小球动能和重力势能相等时的高度为H,此时有mgH=12mv2,由动能定理有-fH-mgH=12mv2-12mv20,得H=209m,故C项错;当小球上升h′=2m时,由动能定理有-fh′-mgh′=Ek2-12mv20,得Ek2=2.5J,Ep2=mgh′=2J,所以动能和重力势能之差为0.5J,故D项正确。答案D4.某工地上,一架起重机将放在地面上的一个箱子吊起。箱子在起重机钢绳的拉力作用下由静止开始竖直向上运动,运动过程中箱子的机械能E与其位移x的关系图象如图3所示,其中0~x1过程的图线为曲线,x1~x2过程的图线为直线。根据图象可知()图3A.0~x1过程中钢绳的拉力逐渐增大B.0~x1过程中箱子的动能一直增加C.x1~x2过程中钢绳的拉力一直不变3D.x1~x2过程中起重机的输出功率一直增大解析由功能关系可知,E=Fx,故E-x图象的斜率表示拉力F,0~x1过程中图象斜率逐渐减小,钢绳的拉力逐渐减小,x1~x2过程中图象斜率恒定,钢绳的拉力不变,选项A错误,C正确;0~x1过程中箱子刚开始做加速运动,拉力大于重力,随着拉力减小,箱子做加速度减小的加速运动,当加速度减为0后,可能做加速度增大的减速运动,选项B错误;若x1~x2过程中箱子做匀速运动,则起重机的输出功率P=Fv保持不变,选项D错误。答案C二、多项选择题5.(2016·东莞市调研测试)如图4所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A点,C为AB的中点。下列说法中正确的是()图4A.小球从A出发到返回A的过程中,位移为零,外力做功为零B.小球从A到C与从C到B的过程,减少的动能相等C.小球从A到C与从C到B的过程,速度的变化率相等D.小球从A到C与从C到B的过程,损失的机械能相等解析小球从A出发到返回A的过程中,位移为零,重力做功为零,但有摩擦力做负功,选项A错误;因为C为AB的中点,小球从A到C与从C到B的过程合外力恒定、加速度恒定、速度的变化率相等,选项C正确;又因为重力做功相等,摩擦力做功相等,合外力做功相等,故减少的动能相等,损失的机械能相等,选项B、D正确。答案BCD6.(2016·贵州六校联考)一个质量为m的物体以某一速度从固定斜面底端冲上倾角α=30°的斜面,其加速度为34g,该物体在斜面上上升的最大高度为h,则此过程中下列说法正确的是()A.动能增加32mghB.重力做负功mghC.机械能损失了-12mgh4D.物体克服摩擦力做功12mgh解析假设物体受到的摩擦力为Ff,根据牛顿第二定律可得Ff+mgsin30°=ma,将a=34g代入求得Ff=14mg。当物体在斜面上上升的最大高度为h时,根据动能定理可得,物体动能增加为负值,选项A错误;物体竖直上升高度h时,重力做负功mgh,选项B正确;机械能的损失等于物体克服摩擦力做的功,为12mgh,选项C错误;物体克服摩擦力做功12mgh,选项D正确。答案BD7.(2014·海南单科,10)如图5所示,质量相同的两物体a、b,用不可伸长的轻绳跨接在同一光滑的轻质定滑轮两侧,a在水平桌面的上方,b在水平粗糙桌面上。初始时用力压住b使a、b静止,撤去此压力后,a开始运动,在a下降的过程中,b始终未离开桌面。在此过程中()图5A.a的动能小于b的动能B.两物体机械能的变化量相等C.a的重力势能的减小量等于两物体总动能的增加量D.绳的拉力对a所做的功与对b所做的功的代数和为零解析轻绳两端沿绳方向的速度分量大小相等,故可知a的速度等于b的速度沿绳方向的分量,a的动能比b的动能小,A正确;因为b与地面有摩擦力,运动时有热量产生,所以a物体下降时,a的机械能的减少量等于b物体的动能增加量和b克服摩擦力做功之和,故B、C错误;轻绳不可伸长,两端分别对a、b做功大小相等,符号相反,D正确。答案AD三、非选择题8.某缓冲装置的理想模型如图6所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的竖直槽内移动,与槽间的滑动摩擦力恒为Ff。轻杆向下移动不超过l时,装置可安全工作。一质量为m的重物若从离弹簧上端h高处由静止自由下落撞击弹簧,将导致轻杆向下移5动l4。轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计空气阻力影响。已知重力加速度为g。图6(1)若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩量x;(2)求为使装置安全工作,允许该重物下落的最大高度H。解析(1)轻杆开始移动时,弹簧的弹力F=kx,且F=Ff,解得x=Ffk(2)设轻杆移动前弹簧所具有的弹性势能为Ep,则重物从开始下落到停止的过程中,根据能量守恒定律可得:mg(h+x+l4)=Ep+Ff·l4重物从最大高度H处下落时,根据能量守恒定律可得:mg(H+x+l)=Ep+Ffl解得H=h+34(Ffmg-1)l答案(1)Ffk(2)h+34(Ffmg-1)l9.(2016·湖北部分重点中学联考)如图7甲所示,固定在水平地面上的工件,由AB和BD两部分组成,其中AB部分为光滑的圆弧,∠AOB=37°,圆弧的半径R=0.5m,圆心O点在B点正上方;BD部分水平,长度为0.2m,C为BD的中点。现有一质量m=1kg,可视为质点的物块从A端由静止释放,恰好能运动到D点。(g=10m/s2,sin37°=0.6,cos37°=0.8)求:6图7(1)为使物块恰好运动到C点静止,可以在物块运动到B点后,对它施加一竖直向下的恒力F,F应为多大?(2)为使物块运动到C点时速度为零,也可先将BD部分以B为轴向上转动一锐角θ,如图乙所示,θ应为多大?(假设B处有一小段的弧线平滑连接,物块经过B点时没有能量损失)(3)接上一问,求物块在BD板上运动的总路程。解析(1)设BD段长度为l,与物块间的动摩擦因数为μ。研究物块运动,根据动能定理有:从A到D的过程中有mgR(1-cos37°)-μmgl=0-0,从A到C,到C点恰好静止的过程中有mgR(1-cos37°)-μFN·l2=0-0又BC段FN=F+mg联立解得μ=0.5,F=10N(2)乙图中,从A到C的过程中,根据动能定理有mgR(1-cos37°)-mg·l2sinθ-μFN′·l2=0-0其中FN′=mgcosθ联立解得θ=37°(3)物块在C处速度减为零后,由于mgsinθ>μmgcosθ,物块将会下滑,而AB段光滑,故物块将做往复运动,直到停止在B点。根据能量守恒定律有mgR(1-cos37°)=Q而摩擦生热Q=fs,f=μmgcosθ联立解得物块在BD板上的总路程s=0.25m答案(1)10N(2)37°(3)0.25m10.(2016·福建质检)如图8所示,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径为r的14细圆管CD,管口D端正下方直立一根劲度系数为k的轻弹簧,轻弹簧一端固定,另一端恰好与管口D端平齐。质量为m的滑块在曲面上距BC的高度为2r7处从静止开始下滑,滑块与BC间的动摩擦因数μ=12,进入管口C端时与圆管恰好无作用力,通过CD后压缩弹簧,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为Ep。求:图8(1)滑块到达B点时的速度大小vB;(2)水平面BC的长度x;(3)在压缩弹簧过程中滑块的最大速度vm。解析(1)滑块在曲面上下滑过程,由动能定理得mg·2r=12mv2B,解得vB=2gr(2)在C点,由mg=mv2Cr得vC=gr滑块从A点运动到C点过程,由动能定理得mg·2r-μmgx=12mv2C解得x=3r(3)设在压缩弹簧过程中速度最大时,滑块离D端的距离为x0,则有kx0=mg,得x0=mgk由能量守恒得mg(r+x0)=12mv2m-12mv2C+Ep得vm=3gr+2mg2k-2Epm答案(1)2gr(2)3r(3)3gr+2mg2k-2Epm
本文标题:2017高考物理一轮复习第5章机械能基础课时15功能关系能量守恒定律(含解析)
链接地址:https://www.777doc.com/doc-2953829 .html