您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 223实际问题与二次函数-几何图形的最大面积
22.3实际问题与二次函数-几何图形的最大面积姓名学号评价(A组)一.解答题(共3小题)1.(2016•内江)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.(B组)2.(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?(C组)3.(2015•广西自主招生)如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?参考答案:一.解答题(共3小题)1.(2016•内江)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.【解答】解:(1)根据题意得:(30﹣2x)x=72,解得:x=3,x=12,∵30﹣2x≤18,∴x=12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=时,即平行于墙的一边长15>8米,y最大=112.5平方米;(3)由题意得:﹣2x2+30x≥100,解得:5≤x≤10.2.(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?【解答】解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英说法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,此时x≠72﹣2x,∴面积最大的不是正方形.3.(2015•广西自主招生)如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【解答】解:(1)横向甬道的面积为:x=150x(m2);(2)横向甬道的面积为:x=150x(m2);甬道总面积为150x+160x﹣2x2=310x﹣2x2,依题意:310x﹣2x2=××80,整理得:x2﹣155x+750=0,x1=5,x2=150(不符合题意,舍去),∴甬道的宽为5米;(3)∵花坛上底120米,下底180米,上下底相距80米,∴等腰梯形的面积为:(120+180)×80=12000,∵甬道总面积为S=310x﹣2x2,绿化总面积为12000﹣S,花坛总费用y=甬道总费用+绿化总费用:∴y=5.7x+(12000﹣S)×0.02,=5.7x﹣0.02S+240,=5.7x﹣0.02(310x﹣2x2)+240,=0.04x2﹣0.5x+240,当x=﹣=6.25时,y的值最小.∵根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.即最少费用为:0.04×62﹣3+240=238.44万元.
本文标题:223实际问题与二次函数-几何图形的最大面积
链接地址:https://www.777doc.com/doc-2954715 .html