您好,欢迎访问三七文档
版权所有:中华资源库学年天津一中高三(下)4月月考数学试卷(文科)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知a,b∈R,i为虚数单位,若,则实数a+b=()A.2B.3C.4D.5考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:利用复数的除法运算化简等式右侧,然后由复数相等的条件列式求解a,b的值,则答案可求.解答:解:由,得,∵a,b∈R,∴,即a=2,b=1.∴a+b=3.故选:B.点评:本题考查复数代数形式的混合运算,复数的分类,是基础题.2.(5分)已知点P(x,y)在不等式组表示的平面区域上运动,则z=x+y的取值范围是()A.[﹣2,﹣1]B.[﹣2,1]C.[﹣1,2]D.[1,3]版权所有:中华资源库考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,通过平移从而求出z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=x+y得y=﹣x+z,即直线的截距最大,z也最大.平移直线y=﹣x+z,即直线y=﹣x+z经过点B(2,1)时,截距最大,此时z最大,为z=2+1=3.经过点A(0,1)时,截距最小,此时z最小,为z=1.∴1≤z≤3,故z的取值范围是[1,3].故选:D.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.(5分)执行如图所示的程序框图,若输出的b的值为31,则图中判断框内①处应填()A.3B.4C.5D.6考点:程序框图.专题:阅读型.分析:框图中给出了两个累加变量,a、b,b累加的次数与a的大小有关,现在题目给出了算法结果,解答时可把每一次运算写出,从而得到输出b=31时a的值.解答:解:第一次运算为b=3,a=2,第二次运算为b=7,a=3,第三次运算为b=15,a=4,第四次运算为b=31,a=5,第五次运算不满足条件,输出b=31,所以a≤4,故选B.点评:本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件则进入循环体,否则结束循环.版权所有:中华资源库.(5分)“a=1”是“函数f(x)=|x﹣a|+b(a,b∈R)在区间[1,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用;简易逻辑.分析:根据函数的单调性的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:当a=1时,f(x)=|x﹣1|+b在[1,+∞)上为增函数;反之,f(x)=|x﹣1|+b在区间[1,+∞)上为增函数,则a≤1,故“a=1”是“函数f(x)=|x﹣a|+b(a,b∈R)在区间[1,+∞)上为增函数”的充分不必要条件,故选:A.点评:本题主要考查充分条件和必要条件的判断,利用三角函数的图象和性质是解决本题的关键.5.(5分)设a=log54,b=(log53)2,c=log45则()A.a<c<bB.b<c<aC.a<b<cD.b<a<c考点:对数的运算性质;对数函数的单调性与特殊点;不等式比较大小.专题:函数的性质及应用.分析:因为a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,所以c最大,排除A、B;又因为a、b∈(0,1),所以a>b,排除C.解答:解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选D.点评:本题考查对数函数的单调性,属基础题.6.(5分)(2015•沈阳模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数y=f(x)的图象()A.关于点(,0)对称B.关于直线x=对称版权所有:中华资源库.关于点(,0)对称D.关于直线x=对称考点:正弦函数的图象.专题:三角函数的图像与性质.分析:由周期求出ω=2,故函数f(x)=sin(2x+φ),再根据图象向右平移个单位后得到的函数y=sin(2x﹣+φ]是奇函数,可得φ=﹣,从而得到函数的解析式,从而求得它的对称性.解答:解:由题意可得=π,解得ω=2,故函数f(x)=sin(2x+φ),其图象向右平移个单位后得到的图象对应的函数为y=sin[2(x﹣)+φ]=sin(2x﹣+φ]是奇函数,又|φ|<,故φ=﹣,故函数f(x)=sin(2x﹣),故当x=时,函数f(x)=sin=1,故函数f(x)=sin(2x﹣)关于直线x=对称,故选:D.点评:本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.7.(5分)(2015•山东校级模拟)已知A,B是圆O:x2+y2=1上的两个点,P是AB线段上的动点,当△AOB的面积最大时,则•﹣的最大值是()A.﹣1B.0C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意知当∠AOB=时,S取最大值,此时⊥,建立坐标系可得A、B、P的坐标,可得•﹣为关于x的二次函数,由二次函数的最值可得.解答:解:由题意知:△AOB的面积S=||||sin∠AOB=×1×1×sin∠AOB=sin∠AOB,当∠AOB=时,S取最大值,此时⊥,如图所示,不妨取A(1,0),B(0,1),设P(x,1﹣x)∴•﹣=•(﹣)=版权所有:中华资源库=(x﹣1,1﹣x)•(﹣x,x﹣1)=﹣x(x﹣1)+(1﹣x)(x﹣1)=(x﹣1)(1﹣2x)=﹣2x2+3x﹣1,x∈[0,1]当x==时,上式取最大值故选:C点评:本题考查平面向量的数量积的运算,涉及三角形的面积公式和二次函数的最值,属中档题.8.(5分)(2014•日照二模)设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6)内,函数y=f(x)﹣loga(x+2),(a>0,a≠1)恰有1个零点,则实数a的取值范围是()A.(1,4)B.(4,+∞)C.(,1)∪(4,+∞)D.(0,1)∪(1,4)考点:函数奇偶性的性质.专题:数形结合法;函数的性质及应用.分析:由f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),推出函数f(x)是以4为最小正周期的函数,结合题意画出在区间(﹣2,6)内函数f(x)和y=loga(x+2)的图象,注意对a讨论,分a>1,0<a<1,结合图象即可得到a的取值范围.解答:解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),又f(2+x)=f(2﹣x),即f(x+4)=f(﹣x)∴f(x+4)=f(x),则函数f(x)是以4为最小正周期的函数,∵当x∈[﹣2,0]时,f(x)=()x﹣1,f(x)是定义在R上的偶函数,∴当x∈[0,2]时,f(x)=()﹣x﹣1,结合题意画出函数f(x)版权所有:中华资源库∈(﹣2,6)上的图象与函数y=loga(x+2)的图象,结合图象分析可知,要使f(x)与y=loga(x+2)的图象,恰有1个交点,则有0<a<1或,解得0<a<1或1<a<4,即a的取值范围是(0,1)∪(1,4).故选:D.点评:本题主要考查函数的奇偶性和周期性及其运用,同时考查数形结合的数学思想方法,以及对底数a的讨论,是一道中档题.二、填空题:(本大题共6小题,每小题5分,共30分,将答案填在题中横线上)9.(5分)已知集合M={﹣1,1},,则M∩N={﹣1}.考点:交集及其运算.专题:计算题.分析:把集合N中的不等式变形后,利用指数函数的单调性列出关于x的不等式,求出解集中的整数解即可得到集合N的元素,然后利用求交集的法则求出M与N的交集即可.解答:解:集合N中的不等式可化为:2﹣1<2x+1<22,版权所有:中华资源库>1,所以指数函数y=2x为增函数,则﹣1<x+1<2即﹣2<x<1,由x∈Z得到x的值可以是﹣1和0所以N={﹣1,0},则M∩N═{﹣1,1}∩{﹣1,0}={﹣1}故答案为:{﹣1}点评:本题属于以函数的单调性为平台,求集合的交集的基础题,是高考常会考的题型.10.(5分)(2015春•天津校级月考)已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1.直径为4的球的体积为V2,则V1:V2=1:2.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图先起床该几何体的条件,结合球的体积公式进行比较即可.解答:解:由几何体的三视图可知,该几何体是一个圆柱挖去一个圆锥,它们的底面半径为2,高为2,故该几何体的体积V1=,球的体积V2=,则V1:V2=,故答案为:1:2点评:本题主要考查空间几何体的体积的计算,根据三视图求出几何体的体积是解决本题的关键.11.(5分)(2015•上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为(x﹣5)2+y2=9.考点:双曲线的简单性质;直线与圆的位置关系.专题:压轴题;圆锥曲线的定义、性质与方程.分析:确定抛物线的焦点,双曲线的渐近线方程,求出圆的半径,即可得到圆的方程.版权所有:中华资源库解答:解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.12.(5分)(2015•西安校级模拟)如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=4.考点:与圆有关的比例线段.专题:直线与圆.分析:利用切割线定理结合题中所给数据,得PA=3,由弦切角定理结合有一个角为60°的等腰三角形是正三角形,得到PE=AE=3,最后由相交弦定理可得BE•DE=AE•CE,从而求出EC的长.解答:解:∵PA是圆O的切线,∴PA2=PD•PB=9,可得PA=3.∵∠PAC是弦切角,夹弧ADC,∴∠PAC=∠ABC=60°,∵△APE中,PE=PA,∴△APE是正三角形,可得PE=AE=PA=3.∴BE=PB﹣PE=6,DE=PE﹣PD=2∵圆O中,弦AC、BD相交于E,∴BE•DE=AE•CE,可得6×2=3EC,∴EC=4,故答案为:4.点评:本题在圆中给出切线,并且以切线长为一边作正三角形的情况下,求线段的长度.着重考查了切线的性质、正三角形的判定和相交弦定理等知识,属于中档题.13.(5分)(2013秋•启东市校级期中)如图,在等腰三角形ABC中,底边BC=2,=,=,若=﹣,则=.版权所有:中华资源库考点:平面向量数量积的运算;向量在几何中的应用.专题:平面向量及应用.分析:可取BC的中点O作为坐标建立坐标系.利用向量的坐标运算,求出两向量的坐标,即可得出答案.解答:解:∵在等腰三角形ABC中,底边BC=2,∴可取BC的中点O作为坐标原点建立如图所示的坐标系.∴B(﹣1,0),C(1,0),设A(0,a)(a>0),∵=,∴D为AC的中点,∴D(,),∴=(,),=(1,﹣a),∵=﹣,∴=﹣,解得a=2∴A(0,2),又∵=,∴,∴==(0,2)(﹣1,﹣2)=(,)∴=(,)﹣(1,0)=(,)∴=(,)•(
本文标题:2014-2015学年天津一中高三(下)4月月考数学试卷(文科)(Word版含解析)
链接地址:https://www.777doc.com/doc-2957558 .html