您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014中考数学不可忽略的七分题--几何题型精选
2014广东中考模拟数学几何题型精选1、如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F.求证:(1)△AEB∽△OFC;(2)AD=2FO.2、如图,抛物线2yaxbx(a>0)经过原点O和点A(2,0).(1)直接写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(-1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.3、如图,直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)求证:PE=PF;(3)若PF=13,sinA=513,求EF的长.4、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F。(1)求证:AEPF是矩形;(2)D为BC中点,连接DE,DF.求证:DE=DF.5、如图,AB是⊙O的直径,C是⊙O上一点,将△ABC顺时旋转90°得到△EQC,延长QE交AB于点Q,过点C的切线CD交PQ于D,连接OC.(1)求证:△CDQ≌△COB;(2)若kACBC(21k为常数),求POBP.6、如图,已知直线121xy与y轴交于点A,与x轴交于点D,抛物线1212bxxy与直线交于A、E两点,与x轴交于B、C两点,且线段OA=OB.(1)求该抛物线的解析式;(2)动点P在y轴上移动,当△PAE是直角三角形时,求点P的坐标;(3)在抛物线的对称轴上找一点M,使CMAM的值最大,求点M的坐标.(注:抛物线cbxaxy2的对称轴为abx2)E7、如图,已知矩形纸片ABCD,AB=1.5,AD=1,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AD、AB交于点F、G(F≠D)。(1)如果△AGF∽△DEF,求FG的长;(2)如果以EG为直径的圆与直线BC相切,求tan∠FGA。8、已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.[来源:学#科#网Z#X#X#K](1)当OC=22时(如图12),求证:CD是⊙O的切线;(2)当OC>22时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。ACD图12BO9、四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA、PB、PC、PD.请解答下列问题:(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.图(1)MNQABCDP图(2)PABCDy图(3)ABCDOx1、证明:(1)如图,连接OB,则∠BAE=12∠BOC,············································1分∵OF⊥BC,∴∠COF=12∠BOC,∴∠BAE=∠COF,······················2分又∵AC⊥BD,OF⊥BC,∴∠OFC=∠AEB=90°,····························3分∴△AEB∽△OFC;···································································4分(2)∵△AEB∽△OFC,∴AEFOBEFC,················································5分由圆周角定理,∠D=∠BCE,∠DAE=∠CBE,∴△ADE∽△BCE,∴ADAEBCBE,∴FOADFCBC,····························7分∵OF⊥BC,∴BC=2FC,∴AD=BCFC•FO=2FO,即AD=2FO.············································································8分2.解:(1)抛物线的对称轴与x轴的交点坐标为(1,0);····································1分(2)抛物线的对称轴是直线x=1.由图可知,当x<1时,y随x的增大而减小,····································3分∴当x1<x2<1时,y1>y2;····························································4分(3)∵对称轴是x=1,点B(-1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,∴点C的坐标是(3,2).·····························································5分设直线AC的关系式为y=kx+b(k≠0).则0223==kbkb,·························6分解得24kb.··············································································8分∴直线AC的函数关系式是:y=2x-4.··············································9分3、解:(1)连接OD,····················································································1分∵直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,∴OB=OA=4,BC=BD=12CD,···················································································································2分∴在Rt△OBD中,2243BDODOB,∴CD=2BD=83;········································································3分(2)∵PE是⊙O的切线,∴∠PEO=90°,···············································4分∴∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,································5分∵OE=OA,∴∠A=∠AEO,∴∠PEF=∠PFE,∴PE=PF;·························································6分(3)过点P作PG⊥EF于点G,····························································7分∴∠PGF=∠ABF=90°,∵∠PFG=∠AFB,∴∠FPG=∠A,∴FG=PF•sinA=13×513=5,······················8分∵PE=PF,∴EF=2FG=10.9分4、证明:⑴因为∠BAC=90°,PE⊥AB,所以PE//AF……1分,同理PF//AE,从而AEPF是平行四边形,PE⊥AB,因而也是矩形……2分,⑵连接DA……3分,因为∠BAC=90°,AB=AC,D为BC中点,所以DA=DC,∠DAE=∠DCF=135°……5分,又由⑴知AE=PF,△CFP是等腰直角三角形,所以CF=PF=AE……6分,所以△DAE≌△DCF……7分,DE=DF……8分5、证明与求解:⑴由旋转知∠B=∠Q,CB=CQ,∠BCQ=90°……1分由切线知∠OCD=90°……2分,所以∠OCB=∠DCQ,△CDQ≌△COB……3分⑵设aBC,bAC,则222baAOAB,22sinbabABACB……4分在△APQ中,22sinsinbabBQ,baAQ……5分,222sinbababQAQAP……6分,从而22222222baababababbaAPABBP……7分,22222222222221baababbabababABAPPO……8分,依题意,kba,所以12)(22)(222222kkkkabababaPOBP……9分6、解:⑴由直线知0x时1y,从而OA=OB=1,)1,0(A、)0,1(B……1分,B点在抛物线上,所以0121b,23b,抛物线为123212xxy……2分,⑵①∠APE=90°(此时不妨将P点记为1P),解121123212xxxy得0x或4x……3分,所以E点的坐标为)3,4(E,1P点的坐标为)3,0(1P……4分②∠AEP=90°(此时不妨将P点记为2P),易知△AEP1∽△EP2P1……5分,从而21121PPAPEP,8134212121APEPPP,2P点的坐标为)11,0(1P……6分⑶抛物线的对称轴为232abx……7分,M在对称轴上,所以MB=MC,CMAM的值最大即MBAM的值最大,因为ABMBAM,所以当M在直线AB上时,CMAM的值最大……8分,由⑴知)1,0(A、)0,1(B,易知直线AB的方程为1xy,当23x时,21y,所求点)21,23(M……9分7、解:⑴因为△AGF∽△DEF,所以∠AFG=∠DFE……1分,又由折叠知∠AFG=∠EFG,所以∠AFG=∠DFE=∠EFG=60o……2分,所以AFEFDF2121……3分,从而3232ADAF,342AFFG……4分⑵设xEGAG,EG的中点为M,过M作BCMN,垂足为N依题意xEGMN2121……5分,MN是中位线,所以5.122xBGMNEC,由222)(BGECBCEG即22)33(1xx,解得1x或45x……6分,当1x时,1EGAG,ADEG是正方形,折痕DGDG,与已知不符……7分当45xAG时,15.12xEC,5.015.1ECCDDE,在△DEF中,222DFDEEF,即222)1(5.0AFAF,解得85AF……8分,所以21tanAGAFFGA……9分8、(1)证明:连接OD,如答图①所示.由题意可知,CD=OD=OA=AB=2,OC=,∴OD2+CD2=OC2由勾股定理的逆定理可知,△OCD为直角三角形,则OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.(2)解:①如答图②所示,连接OE,OD,则有CD=DE=OD=OE,∴△ODE为等边三角形,∠1=∠2=∠3=60°;∵OD=CD,∴∠4=∠5,∵∠3=∠4+∠5,∴∠4=∠5=30°,∴∠EOC=∠2+∠4=90°,因此△EOC是含30度角的直角三角形,△AOE是等腰直角三角形.在Rt△EOC中,CE=2OA=4,OC=4cos30°=,在等腰直角三角形AOE中,AE=OA=,∴△ACE的周长为:AE+CE+AC=AE+CE+(OA+OC)=+4+(2+)=6++.②存在,这样的梯形有2个.答图③
本文标题:2014中考数学不可忽略的七分题--几何题型精选
链接地址:https://www.777doc.com/doc-2959278 .html