您好,欢迎访问三七文档
课后作业(二十二)两角和与差的正弦、余弦和正切公式一、选择题1.(2013·清远质检)3-sin70°2-cos210°=()A.12B.22C.2D.322.在△ABC中,tanA+tanB+3=3tanAtanB,则C等于()A.π3B.2π3C.π6D.π43.(2013·广州模拟)若cos2αsin(α-π4)=-22,则cosα+sinα的值为()A.-72B.-12C.12D.724.若sin(α-β)sinβ-cos(α-β)cosβ=45,且α是第二象限角,则tan(π4+α)等于()A.7B.-7C.17D.-175.(2013·潮州模拟)设sin(π4+θ)=13,则sin2θ=()A.-79B.-19C.19D.79二、填空题6.已知tan(x+π4)=2,则tanxtan2x的值为________.7.已知sin(θ+π3)=35,θ∈(π6,23π),则cosθ=________.8.(2013·肇庆调研)若cos(α+β)=15,cos(α-β)=35,则tanα·tanβ=________.三、解答题9.(2013·清远质检)已知函数f(x)=2sin(13x-π6),x∈R.(1)求f(5π4)的值;(2)设α,β∈[0,π2],f(3α+π2)=1013,f(3β+2π)=65,求cos(α+β)的值.10.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最低点间的距离为2π.(1)求f(x)的解析式;(2)若α∈(-π3,π2),f(α+π3)=13,求sin(2α+2π3)的值.11.已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R.(1)求f(x)的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f(β)]2-2=0.解析及答案一、选择题1.【解析】原式=3-sin70°12(3-cos20°)=2(3-sin70°)3-sin70°=2.【答案】C2.【解析】由已知得tanA+tanB=-3(1-tanAtanB),∴tanA+tanB1-tanAtanB=-3,即tan(A+B)=-3,又tanC=tan[π-(A+B)]=-tan(A+B)=3,又0<C<π,∴C=π3.【答案】A3.【解析】cos2αsin(α-π4)=cos2α-sin2α22(sinα-cosα)=-2(sinα+cosα)=-22.∴sinα+cosα=12.【答案】C4.【解析】∵sin(α-β)sinβ-cos(α-β)cosβ=45,∴cosα=-45.又α是第二象限角,∴sinα=35,则tanα=-34.∴tan(π4+α)=tanπ4+tanα1-tanπ4tanα=1-341+34=17.【答案】C5.【解析】∵sin(π4+θ)=13,∴cos(π2+2θ)=1-2sin2(π4+θ)=1-29=79,又cos(π2+2θ)=-sin2θ,∴-sin2θ=79,即sin2θ=-79.【答案】A二、填空题6.【解析】由tan(x+π4)=2得tanx+11-tanx=2,∴tanx=13,∴tanxtan2x=tanx2tanx1-tan2x=1-tan2x2=12(1-19)=49.【答案】497.【解析】∵θ∈(π6,23π),∴θ+π3∈(π2,π),由sin(θ+π3)=35知cos(θ+π3)=-45,∴cosθ=cos[(θ+π3)-π3]=-45×12+35×32=33-410.【答案】33-4108.【解析】∵cos(α+β)=15且cos(α-β)=35,∴cosαcosβ-sinαsinβ=15,cosαcosβ+sinαsinβ=35,∴cosαcosβ=25,sinαsinβ=15,∴tanα·tanβ=sinαsinβcosαcosβ=12.【答案】12三、解答题9.【解】(1)f(5π4)=2sin(13×5π4-π6)=2sinπ4=2.(2)f(3α+π2)=2sin[(13(3α+π2)-π6)]=2sinα=1013,∴sinα=513,f(3β+2π)=2sin[13(3β+2π)-π6]=2sin(β+π2)=65,∴cosβ=35.∵α,β∈[0,π2],∴cosα=1-sin2α=1213,sinβ=1-cos2β=45,∴cos(α+β)=cosαcosβ-sinαsinβ=1213×35-513×45=1665.10.【解】(1)因为周期为2π,所以ω=1,又因为0≤φ≤π,且f(x)为偶函数,所以φ=π2,则f(x)=sin(x+π2)=cosx.(2)因为cos(α+π3)=13,又α+π3∈(0,5π6),所以sin(α+π3)=223,因此sin(2α+2π3)=2sin(α+π3)cos(α+π3)=2×223×13=429.11.【解】(1)∵f(x)=sin(x+7π4-2π)+sin(x-3π4+π2)=sin(x-π4)+sin(x-π4)=2sin(x-π4).∴T=2π,f(x)的最小值为-2.(2)证明∵cos(β-α)=45,cos(β+α)=-45.∴cosβcosα+sinβsinα=45,cosβcosα-sinβsinα=-45,两式相加得2cosβcosα=0.∵0<α<β≤π2,∴β=π2.由(1)知f(x)=2sin(x-π4),∴[f(β)]2-2=4sin2π4-2=4×(22)2-2=0.
本文标题:2014届高三数学(理)一轮复习课后作业(二十二)两角和与差的正弦余弦和正切公式
链接地址:https://www.777doc.com/doc-2962099 .html