您好,欢迎访问三七文档
第五章厌氧生物法5.1厌氧生物处理原理一、定义:废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。二、厌氧消化过程厌氧消化过程划分为三个连续的阶段:即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。二、厌氧消化的三个阶段和COD转化率此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的l/3后者约占2/3。5.2厌氧法的影响因素控制厌氧处理效率的基本因素有两类:一类是基础因素,包括微生物量(污泥浓度)、营养比、混合接触状况、有机负荷等;另一类是环境因素,如温度、pH值、氧化还原电位、有毒物质等。产甲烷细菌是决定厌氧消化效率和成败的主要微生物,产甲烷阶段是厌氧过程速率的限制步骤。一、温度条件据产甲烷菌适宜温度条件的不同,厌氧法可分为常温消化、中温消化和高温消化三种类型。(1)常温消化(10~30℃)(2)中温消化(35~38℃)(3)高温厌氧消化(50~55℃)二、pH值产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5~8.0之间。产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0~7.2,pH6.6~7.4较为适宜。在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5~7.5(最好在6.8~7.2)的范围内。pH值对产甲烷菌活性的影响020406080100456789pH值相对活性(%)三、氧化还原电位无氧环境是严格厌氧的产甲烷菌繁殖的最基本条件之一。产甲烷菌对氧和氧化剂非常敏感,这是因为它不象好氧菌那样具有过氧化氢酶。氧是影响厌氧反应器中氧化还原电位条件的重要因素,但不是唯一因素。四、有毒物质包括有毒有机物、重金属离子和一些阴离子等。对有机物来说,带醛基、双键、氯取代基、苯环等结构,往往具有抑制性。有毒物质的最高容许浓度与处理系统的运行方式、污泥驯化程度、废水特性、操作控制条件等因素有关。5.3厌氧反应器一、厌氧工艺的有关术语(1)上流速度(表面速度或表面负荷)(2)水力停留时间(HRT)(3)反应器中的污泥量(4)反应器的有机负荷(OLR):分为容积负荷(VLR)和污泥负荷(SLR)。(5)污泥体积指数(SVI)(6)污泥的比产甲烷活性(7)反应器内的污泥停留时间(SRT):亦称泥龄。二、厌氧反应器厌氧活性污泥法包括普通消化池、厌氧接触工艺、上流式厌氧污泥床反应器等。厌氧生物膜法包括厌氧生物滤池、厌氧流化床、厌氧生物转盘等。1、普通厌氧消化池普通消化池又称传统或常规消化池。消化池常用密闭的圆柱形池,废水定期或连续进入池中,经消化的污泥和废水分别由消化池底和上部排出,所产沼气从顶部排出。池径从几米至三、四十米,柱体部分的高度约为直径的1/2,池底呈圆锥形,以利排泥。为使进水与微生物尽快接触,需要一定的搅拌。常用搅拌方式有三种:池内机械搅拌;沼气搅拌;循环消化液搅拌。螺旋浆搅拌的消化池循环消化液搅拌式消化池普通消化池的特点是:可以直接处理悬浮固体含量较高或颗粒较大的料液。厌氧消化反应与固液分离在同一个池内实现,结构较简单。缺乏持留或补充厌氧活性污泥的特殊装置,消化器中难以保持大量的微生物细胞。对无搅拌的消化器,还存在料液的分层现象严重,微生物不能与料液均匀接触的问题。温度不均匀,消化效率低3、厌氧接触法为了克服普通消化池不能持留或补充厌氧活性污泥的缺点,在消化池侯设沉淀池,将沉淀污泥回流至消化池,形成了厌氧接触法。厌氧接触氧化法的工艺流程为:厌氧接触法的特点:(a)通过污泥回流,保持消化池内污泥浓度较高,一般为10~15g/L,耐冲击能力强(b)消化池的容积负荷较普通消化池高;(c)可以直接处理悬浮固体含量较高或颗粒较大的料液,不存在堵塞问题;(d)混合液经沉降后,出水水质好;(e)但需增加沉淀池、污泥回流和脱气等设备;(f)厌氧接触法存在混合液难于在沉淀池中进行固液分离的缺点。3、上流式厌氧污泥床反应器上流式厌氧污泥床反应器(upflowanaerobicsludgeblanketreactor),简称UASB反应器,是由荷兰的G.Lettnga等人在70年代初研制开发的。污泥床反应器内没有载体,是一种悬浮生长型的消化器。由反应区(reactionregion)、沉淀区(settlingregion)和气室(gascollectiondome)三部分组成。上流式厌氧污泥床的池形有圆形、方形、矩形。小型装置常为圆柱形,底部呈锥形或圆弧形。大型装置为便于设置气、液、固三相分离器,则一般为矩形,高度一般为3~8m,其中污泥床1~2m,污泥悬浮层2~4m,多用钢结构或钢筋混凝土结构,上流式厌氧污泥床反应器的特点:UASB布置结果示意图布水区反应区三相分离区超高4、厌氧滤池厌氧滤池,又称厌氧固定膜反应器,是60年代末开发的新型高效厌氧处理装置。滤池呈圆柱形,池内装放填料,池底和池顶密封。厌氧微生物附着于填料的表面生长,当废水通过填料层时,在填料表面的厌氧生物膜作用下,废水中的有机物被降解,并产生沼气,沼气从池顶部排出。厌氧生物滤池的组成厌氧生物滤池主要由以下几个重要部分组成的,即:滤料、布水系统、沼气收集系统。根据废水在厌氧生物滤池中的流向的不同,可分为升流式厌氧生物滤池、降流式厌氧生物滤池和升流式混合型厌氧生物滤池等三种形式,即分别如下图所示:厌氧生物滤池的特点及改进:厌氧生物滤池采取如下改进:(a)出水回流;(b)部分充填载体;(c)采用软性填料。厌氧生物滤池的特点是:(a)由于填料为微生物附着生长提供了较大的表面积,滤池中的微生物量较高,又因生物膜停留时间长,平均停留时间长达100天左右,因而可承受的有机容积负荷高,COD容积负荷为2~16kgCOD/(m3·d),且耐冲击负荷能力强;(b)废水与生物膜两相接触面大,强化了传质过程,因而有机物去除速度快;(c)微生物固着生长为主,不易流失,因此不需污泥回流和搅拌设备;(d)启动或停止运行后再启动比前述厌氧工艺法时间短。(e)处理含悬浮物浓度高的有机废水,易发生堵塞,尤以进水部位更严重。滤池的清洗也还没有简单有效的方法。5、厌氧流化床厌氧流化床的基本原理:厌氧流化床的特点:(a)载体颗粒细,比表面积大,可高达2000~3000m2/m3左右,使床内具有很高的微生物浓度,因此有机物容积负荷大,一般为10~40kgCOD/m3·d,水力停留时间短,具有较强的耐冲击负荷能力,运行稳定;(b)载体处于流化状态,无床层堵塞现象,对高、中、低浓度废水均表现出较好的效能;(c)载体流化时,废水与微生物之间接触面大,同时两者相对运动速度快,强化了传质过程,从而具有较高的有机物净化速度;(d)床内生物膜停留时间较长,剩余污泥量少;(e)结构紧凑、占地少以及基建投资省等。(f)但载体流化耗能较大,且对系统的管理技术要求较高。为了降低动力消耗和防止床层堵塞,可采取如下措施:(a)间歇性流化床工艺(b)尽可能取质轻、粒细的载体,如粒径20~30m、相对密度1.05~1.2g/cm3的载体。保持低的回流量,甚至免除回流就可实现床层流态化。6、两步厌氧法和复合厌氧法厌氧消化反应分别在两个独立的反应器中进行,每一反应器完成一个阶段的反应,比如一为产酸阶段,另一为产甲烷阶段,故又称两段式厌氧消化法。第一步反应器可采用简易非密闭装置、在常温、较宽pH值范围条件下运行;第二步反应器则要求严格密封、严格控制温度和pH值范围。接触消化池-上流式污泥床两步消化工艺流程两步厌氧法具有如下特点:(a)耐冲击负荷能力强,运行稳定,避免了一步法不耐高有机酸浓度的缺陷;(b)两阶段反应不在同一反应器中进行,互相影响小,可更好地控制工艺条件(c)消化效率高,尤其适于处理含悬浮固体多、难消化降解的高浓度有机废水(d)但两步法设备较多,流程和操作复杂。5.4污泥消化污泥消化目的:是改善污泥的卫生条件和使污泥易于脱水(因污泥气的上升可使污泥具有较大的空隙,因而易于脱水)。一、消化设备消化污泥的主要构筑物称为消化池或沼气池。二、影响消化的因素影响消化的主要因素有:温度碳氮比生、熟污泥配比有毒物质酸碱度搅拌(1)温度细菌的活动与温度有关,一般可根据不听的温度将发酵过程分为三个类型:温度为5~15℃,称为低温发酵;温度为30~35℃,称为中温发酵;温度为50~55℃,称为高温发酵。(2)碳氮比碳氮比太高,细菌的氮量不足,消化液缓冲能力低,pH值容易降低。碳氮比太低,含氮量过多,pH值可能上升到8.0以上,脂肪酸的铵盐要积累,使有机物分解受到抑制。对于污泥处理来说,碳氮比以(10~20):1较合适。(3)生熟污泥配比正常运行的消化池是处于碱性发酵阶段,如加入的生污泥多,产酸率则大于用酸率,挥发酸将累积起来而破坏酸性发酵;加入的生污泥少,分解速度虽可加入,但池子容积将增大,所以消化池的投配率须恰当。(4)有毒物质含量主要的有毒物质是重金属和某些阴离子。因此必须严格控制排入城市排水系统的工业废水中的重金属离子含量。(5)酸碱度甲烷细菌生长最适宜的pH值范围约为6.8~7.2之间,如果pH值低于6或者高于8,生长繁殖将大受影响。(6)搅拌搅拌可使新鲜有机物与腐熟有机物均匀接触,加速热传导;均匀地供给细菌以养料;打碎发酵池液面上的浮渣层,使整个池子处于消化发酵活跃状态,以提高发酵池的负荷。
本文标题:第七章厌氧生物法
链接地址:https://www.777doc.com/doc-296387 .html