您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年中考备考二轮专题(24题专题)几何综合
122题专题训练考点分析:考察学生在图形变换的条件下,综合运用全等、相似等相关知识解决几何证明,让学生经历由特殊到一般的思维活动过程,由猜想至验证的数学活动。又要注入新的理念:与时俱进,关注全国各地中考试题走向。重点:综合运用旋转、平移、对称、翻折、全等、相似、解直角三角形、勾股定理等知识解决几何证明难点:从特殊到一般的数学思想方法的运用,在特殊图形中发现问题,在一般图形中证明方法:动手操作、观察猜想、合情推理、分类讨论、归纳证明1、从特殊到一般例:(2013武汉中考)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证CDADCFDE;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得CDADCFDE成立?并证明你的结论;(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出CFDE的值.分析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DCADCFDE.(2)当∠B+∠EGC=180°时,DCADCFDE成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM,∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED.∴△ADE∽△DCM,∴DCADCMDE,即DCADCFDE.EFGABCD第24题图①第24题图②ABCDFGE第24题图③ABCDFGEMEGFDCBA第24题图②2(3)2425CFDE.本题考查矩形、平行四边形的性质,相似的判定与性质。从一般到特殊的分析方法。考查学生综合能力。课堂练习:1、(2012河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若3AFEF,求CDCG的值。(1)尝试探究在图1中,过点E作EHAB∥交BG于点H,则AB和EH的数量关系是,CG和EH的数量关系是,CDCG的值是(2)类比延伸如图2,在原题的条件下,若(0)AFmmBF则CDCG的值是(用含m的代数式表示),试写出解答过程。(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若,(0,0)ABBCababCDBE,则AFEF的值是(用含,ab的代数式表示).2、(2012武汉四月)如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,点M为BC边上一点,BE⊥AM于E交AC于F,且BM=n•CM.(1)如图①,当n=3时,ABAF=;(2)如图②,当n=2时,求证:AE=32EM;(3)如图③,当n=时,E为AM的中点(画图并直接写出结果)32、动点问题教学目标:学会分析问题中动点的运动规律,提高作图能力教学重点:在运动中找出不变的关系教学难点:复杂图形中的特殊图形例:(2013武汉四月)如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.分析:(1)证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.∴△AEM≌△HMG.∴ME=MG.∴∠EGM=45°.由(1)得△AEM≌△DFM,∴ME=MF.∵MG⊥EF,∴GE=GF.∴∠EGF=2∠EGM=90°.∴△GEF是等腰直角三角形.(3)①当点G、C重合时利用三角形相似就可以求出AE的值,从而求出AE的取值范围.②过点G作GH⊥AD交AD延长线于点H,证明△AEM∽△HMG,可以得出EMAMMGGH从而得出tan∠MEG=3就可以求出∠MEG=60°,就可以得出结论.知识归纳:学会分析运动过程中不变的关系,如两个三角形的关系、线段和角的相等关系或倍数关系。课堂练习:1、(2012包头)如图,在Rt△ABC中,∠C=900,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ。设动点运动时间为t秒(t0)。4(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行。为什么?(3)当t为何值时,△EDQ为直角三角形。2、(2013武汉调考)已知等边△ABC,边长为4,点D从点A出发,沿AB运动到点B,到点B停止运动.点E从A出发,沿AC的方向在直线AC上运动.点D的速度为每秒1个单位,点E的速度为每秒2个单位,它们同时出发,同时停止.以点E为圆心,DE长为半径作圆.设E点的运动时间为t秒.(l)如图l,判断⊙E与AB的位置关系,并证明你的结论;(2)如图2,当⊙E与BC切于点F时,求t的值;(3)以点C为圆心,CE长为半径作⊙C,⊙C与射线AC交于点G.当⊙C与⊙E相切时,直接写出t的值为.53、实验操作教学重点:让学生熟悉几何作图的方法和技巧教学难点:学会綜合应用知识的能力例:(2012武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).考点:作图—相似变换。专题:作图题。分析:(1)作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠AMN=∠B,利用相似可得MN的长;(2)①AB为两直角边长为4,8的直角三角形的斜边,2为两直角边长为2,4的两直角三角形的斜边;②以所给网格的对角线作为原三角形中最长的边,可得每条对角线处可作4个三角形与原三角形相似,那么共有8个.课堂练习1、(2012山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【点评】本题综合考查了全等三角形的判定与性质、角平分线的性质、等腰三角形的性质、矩形的判定与性质等初数中常见的几何知识点.对考生的综合能力有一定的要求,故是选拔考生较好的能力题.难度较大.62、(2012•贵阳)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有_________条面积等分线,平行四边形有_________条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.4、旋转变换教学目标:熟练掌握旋转的性质,将图形的旋转变换运用到综合问题中。教学重点:旋转性质的应用教学难点:分析实际问题中的旋转例:(2012北京)在ABC△中,BABCBAC,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2得到线段PQ。(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出CDB的度数;(2)在图2中,点P不与点BM,重合,线段CQ的延长线与射线BM交于点D,猜想CDB的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段的延长线与射线BM交于点D,且PQQD,请直接写出的范围。分析:(1)∠CDB=30°;(2)如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,∴AD=CD,AP=PC,PD=PD,∴△APD≌△CPD(SSS),∴∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠PAD,∴∠PAD+∠PQD=∠4+∠PQD=180°,∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°,∴∠ADC=180°-∠APQ=180°-2α,∴2∠CDB=180°-2α,∴∠CDB=90°-α;7(3)如图1,延长BM,CQ交于点D,连接AD,∵∠CDB=90°-α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∵点P在线段BM上运动,∠BAD最大为2α,∠MAD最大等于α,∴2α>180°-2α>α,∴45°<α<60°.课堂练习:1、(2012长沙)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.2、(2012辽宁)已知,在△ABC中,AB=AC。过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN。(1)当∠BAC=∠MBN=90°时,①如图a,当=45°时,∠ANC的度数为_______;②如图b,当≠45°时,①中的结论是否发生变化?说明理由;[来源:学科网ZXXK](2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明。5、折叠问题教学重点:综合问题中对称性的应用教学难点:对称性在综合问题的应用例:(2012宜昌)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F.8(1)点E可以是AD的中点吗?为什么?(2)求证:△ABG∽△BFE;(3)设AD=a,AB=b,BC=c①当四边形EFCD为平行四边形时,求a,b,c应满足的关
本文标题:2014年中考备考二轮专题(24题专题)几何综合
链接地址:https://www.777doc.com/doc-2965789 .html