您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年最新中考数学真题解析汇编一元二次方程及其应用
一元二次方程及其应用选择题1.(2014•海南,第10题3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=81考点:由实际问题抽象出一元二次方程..专题:增长率问题.分析:若两次降价的百分率均是x,则第一次降价后价格为100(1﹣x)元,第二次降价后价格为100(1﹣x)(1﹣x)=100(1﹣x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.解答:解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选B.点评:本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.2.(2014•宁夏,第3题3分)一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣考点:解一元二次方程-配方法.专题:计算题.分析:方程变形后,配方得到结果,开方即可求出值.解答:解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.(2014•陕西,第8题3分)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣4考点:一元二次方程的解.菁优网分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.4.(2014•湖北黄冈,第6题3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8B.32C.16D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.5.(2014•湖北荆门,第5题3分)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(2014•攀枝花,第8题3分)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1B.αβ=﹣1C.α2+β2=3D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.二、填空题1.(2014•湖南永州,第10题3分)方程x2﹣2x=0的解为x1=0,x2=2.考点:解一元二次方程-因式分解法;解一元一次方程..专题:计算题.分析:把方程的左边分解因式得x(x﹣2)=0,得到x=0或x﹣2=0,求出方程的解即可.解答:解:x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,x1=0或x2=2.故答案为:x1=0,x2=2.点评:本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.2.(2014•随州,第14题3分)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.考点:一元二次方程的应用专题:增长率问题.分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解答:解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.点评:本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.3、(2014•江西,第10题3分)若,ab是方程2230xx--=的两个实数根,则22ab+=_______。【答案】x>12。【考点】根的判别式,根与系数的关系,完全平方公式,代数式求值.根据一元二次方程根与系数的关系,若任意一元二次方程ax2+bx+c=0(a≠0)有两根x1,x2,则x1+x2=-ba,x1•x2=ca,根据完全平方化公式对化数进行变形,代入计算即可.【解答】解:∵a、b是方程x2-2x-3=0的两根,∴a+b=2,ab=-3,a2+b2=(a+b)2--2ab=22-2×(-3)=10.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:如果方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.也考查了代数式的变形能力、整体思想的运用.4.(2014•黑龙江哈尔滨,第15题3分)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2014•黑龙江牡丹江,第18题3分)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.解答:解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.点评:本题考查了由实际问题抽象出一元二次方程的知识,对于面积问题应熟记各种图形的面积公式.另外,要学会通过图形求出面积.6.(2014•莱芜,第15题4分)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=﹣1.考点:根与系数的关系..分析:根据已知和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.点评:本题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=进行求解.7.(2014•丽水,第15题4分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程(30﹣2x)(20﹣x)=6×78.考点:由实际问题抽象出一元二次方程..专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解答:解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故答案为:(30﹣2x)(20﹣x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.8.(2014•广西来宾,第10题3分)已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0B.x2+2x﹣3=0C.x2﹣x﹣6=0D.x2+x﹣6=0考点:根与系数的关系.分析:首先设此一元二次方程为x2+px+q=0,由二次项系数为1,两根分别为2,﹣3,根据根与系数的关系可得p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,继而求得答案.解答:解:设此一元二次方程为x2+px+q=0,∵二次项系数为1,两根分别为﹣2,3,∴p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,∴这个方程为:x2+x﹣6=0.故选:D.点评:此题考查了根与系数的关系.此题难度不大,注意若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2.9.(2014年广西钦州,第7题3分)若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10B.10C.﹣16D.16考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系得到两根之和即可.解答:解:∵x1,x2一元二次方程x2+10x+16=0两个根,∴x1+x2=﹣10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.10.三、解答题1.(2014•湖北宜昌,第22题10分)在“文化宜昌•全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.(1)求2014年全校学生人数;(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)①求2012年全校学生人均阅读量;②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.考点:一元二次方程的应用;一元一次方程的应用.分析:(1)根据题意,先求出2013年全校的学生人数就可以求出2014年的学生人数;(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,根据阅读总量之间的数量关系建立方程就可以得出结论;②由①的结论就可以求出2012年读书社的人均读书量,2014年读书社的人均读书量,全校的人均
本文标题:2014年最新中考数学真题解析汇编一元二次方程及其应用
链接地址:https://www.777doc.com/doc-2971114 .html