您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 2016年全国卷新课标参数方程和极坐标专题复习和预测
参数方程和极坐标系答题模板参数方程和极坐标在近几年全国卷中年年必考,其难易程度属于低中档,主要有两个小问,第一问基本考察参数方程、极坐标与普通方程的相互转化。第二问是利用解析几何的性质解决问题,但这几年也考察极坐标极径和直线参数方程中t的几何意义。知识要点必备:一、参数方程(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即)()(tfytfx并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x0,y0),倾角为α的直线:sincos00tyytxx(t为参数)其中参数t是以定点P(x0,y0)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离.根据t的几何意义,有以下结论.○1.设A、B是直线上任意两点,它们对应的参数分别为tA和tB,则AB=ABtt=BAABtttt4)(2.○2.线段AB的中点所对应的参数值等于2BAtt.2.中心在(x0,y0),半径等于r的圆:sincos00ryyrxx(为参数)3.中心在原点,焦点在x轴(或y轴)上的椭圆:sincosbyax(为参数)(或sincosaybx)中心在点(x0,y0)焦点在平行于x轴的直线上的椭圆的参数方程为参数)(.sin,cos00byyaxx4.中心在原点,焦点在x轴(或y轴)上的双曲线:tgsecbyax(为参数)(或ecaybxstg)5.顶点在原点,焦点在x轴正半轴上的抛物线:ptyptx222(t为参数,p>0)直线的参数方程和参数的几何意义二、极坐标系1、定义:在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标。这样建立的坐标系叫做极坐标系。2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应惟一点P(,),但平面内任一个点P的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P(,)(极点除外)的全部坐标为(,+k2)或(,+)12(k),(kZ).极点的极径为0,而极角任意取.若对、的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定0,0≤<2或0,<≤等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.3、直角坐标系和极坐标系的互化极坐标直角坐标点(2,3)(1,3)曲线1cosX=14Y=xsincosyxyx2221、(2015年新课标全国1卷).(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线1:2Cx,圆222:121Cxy,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求12,CC的极坐标方程.(II)若直线3C的极坐标方程为πR4,设23,CC的交点为,MN,求2CMN的面积.解(I)因为cos,sinxy,所以1C的极坐标方程为cos2,2C的极坐标方程为22cos4sin40.……5分(II)(法一)将4代入22cos4sin40,得23240,解得1222,2.故122,即2MN由于2C的半径为1,所以2CMN的面积为12.……10分(法二)利用普通方程代数法和几何法求面积。2、(2014年新课标全国卷)已知曲线194:22yxC,直线tytxl222:(t为参数)(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求PA的最大值与最小值.解:(I)曲线C的参数方程为sin3cos2yx(为参数)直线L的普通方程为06x2y。。。。。。。。5分(II)曲线C上的任意一点P()sin3,cos2到L的距离为6sin3cos455d则PA6)sin(555230sin0d,其中为锐角,且34tan,当1)sin(PA取的最小值,最小值为552当1)sin(PA取的最大值,最大值为5522。。。。。。。10分3.(2013课标全国Ⅰ)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinxtyt(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将45cos,55sinxtyt消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxy代入x2+y2-8x-10y+16=0得ρ2-8ρcosθ-10ρsinθ+16=0.所以C1的极坐标方程为ρ2-8ρcosθ-10ρsinθ+16=0.(2)C2的普通方程为x2+y2-2y=0.由2222810160,20xyxyxyy解得1,1xy或0,2.xy所以C1与C2交点的极坐标分别为π2,4,π2,2.小结:新课改全国卷的参数方程和极坐标主要是在解答题的选做题。其难度一般不是很大4、(2012年全国卷1)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C1的参数方程是x=2cosφy=3sinφ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,π3)(Ⅰ)求点A、B、C、D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围。例题选讲:1.在椭圆4x2+9y2=36上求一点P,使它到直线x+2y+18=0的距离最短(或最长).2.已知直线;l:tytx4231与双曲线(y-2)2-x2=1相交于A、B两点,P点坐标P(-1,2)。求:(1)|PA|.|PB|的值;(2)弦长|AB|;弦AB中点M与点P的距离。3、在极坐标系中,直线L:23)3(sin与曲线)0(sin2Caa:有且只有一个交点。(1)求a的值;(2)若o为极点,A、B为曲线C上的两点,且3AOB,求OBOA的最大值
本文标题:2016年全国卷新课标参数方程和极坐标专题复习和预测
链接地址:https://www.777doc.com/doc-2974352 .html