您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2013年中考数学模拟试题汇编直线与圆的位置关系
2013年中考数学模拟试题汇编直线与圆的位置关系一、选择题1、如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是(A).A.(5,4)B.(4,5)C.(5,3)D.(3,5)2、如图在ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是(A)A.4.8B.4.75C.5D.421题2题3题3、同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为(C)A、相离B、相交C、相切D、不能确定4、如图已知AD是△ABC的外接圆的直径,AD=13cm,135cosB,则AC的长等于(C)A.5cmB.6cmC.12cmD.10cm5、如图PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,则∠ACB=(C)A.60°B.75°C.105°D.120°6、如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是(B)A.80°B.110°C.120°D.140°7、如图在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点,则弦CD的长是(D)A.3B.33C.6D.638、.如图:⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于(C)A.20°B.50°C.30°D.60°7题D8题9.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(C)A.B.C.D.10.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为(A)A.2,22.5°B.3,30°C.3,22.5°D.2,30°ADCB(第4题)OPAB第5、6题图CDCAMB11.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是(D)A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE10题11题12题12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(B)A.4B.C.6D.13.在一个圆中,给出下列命题,其中正确的是(C)A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径14.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为(B)A.2cmB.2.4cmC.3cmD.4cm15.如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(A)A.50°B.40°C.60°D.70°16.如图CD是⊙O的直径,弦ABCD于点G,直线EF与⊙O相切与点D,则下列结论中不一定正确的是(C)A.AG=BGB.AB//EFC.AD//BCD.ABCADC17.如图P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O周长为(C)A.18πcmB.16πcmC.20πcmD.24πcm15题16题17题18.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为(C)A.40°B.50°C.65°D.75°二.填空题18.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为2.19.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为2.5,CD=4,则弦AC的长为.2520.如图AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC的弧长为.(结果保留π)π/3OBCA(第18题图)AFC0GDFBOPA18题19题20题21题AOBCMN21.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°.则∠B=度.60°22、如图OA是⊙B的直径,OA=4,CD是⊙B的切线,D为切点,∠DOC=30°,则点C的坐标为.(6,0)三.解答题1.如图在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.[解](1)证明:依题意可知,A(0,2)∵A(0,2),P(4,2),∴AP∥x轴,∴∠OAP=90°,且点A在⊙O上,∴PA是⊙O的切线;(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP=90°,即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2+PE2,∴x2=(4-x)2+22,解得x=25,∴BC=CE=4-25=23,∵21OB·BC=21OC·BD,即21×2×23=21×25×BD,∴BD=56∴OD=22BDOB=25364=58,OBACxyD22由点B在第四象限可知B(58,56);解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D,∵PB切⊙O于点B,∴∠OBP=90°即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2PE2,∴x2=(4-x)2+22,解得x=25,∴BC=CE=4-25=23,∵BD∥x轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,∴△OBC∽△BDO,∴BDOB=ODCB=BOOC,即BD2=BD23=225,∴BD=58,OD=56,由点B在第四象限可知B(58,56);(3)设直线AB的解析式为y=kx+b,由A(0,2),B(58,56),可得5658,2bkb;解得,2,2kb∴直线AB的解析式为y=-2x+2.2.如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.考点:切线的判定;勾股定理;垂径定理.专题:计算题.分析:(1)根据垂径定理由半径OC垂直于弦AB,AE=AB=4,再根据勾股定理计算出OE=3,则EC=2,然后在Rt△AEC中根据正切的定义可得到tan∠BAC的值;(2)根据垂径定理得到AC弧=BC弧,再利用圆周角定理可得到∠AOC=2∠BAC,由于∠DAC=∠BAC,所以∠AOC=∠BAD,利用∠AOC+∠OAE=90°即可得到∠BAD+∠OAE=90°,然后根据切线的判定方法得AD为⊙O的切线.解答:解:(1)∵半径OC垂直于弦AB,∴AE=BE=AB=4,在Rt△OAE中,OA=5,AE=4,∴OE==3,∴EC=OC﹣OE=5﹣3=2,在Rt△AEC中,AE=4,EC=2,∴tan∠BAC===;(2)AD与⊙O相切.理由如下:∵半径OC垂直于弦AB,∵AC弧=BC弧,∴∠AOC=2∠BAC,∵∠DAC=∠BAC,∴∠AOC=∠BAD,∵∠AOC+∠OAE=90°,∴∠BAD+∠OAE=90°,∴OA⊥AD,∴AD为⊙O的切线.点评:本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了勾股定理以及垂径定理、圆周角定理.3.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.解答:(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.(1分)∵∠OAD=∠DAE,∴∠ODA=∠DAE.(2分)∴DO∥MN.(3分)∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.(4分)∵D在⊙O上,∴DE是⊙O的切线.(5分)(2)解:∵∠AED=90°,DE=6,AE=3,∴.(6分)连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.(7分)∵∠CAD=∠DAE,∴△ACD∽△ADE.(8分)∴.∴.则AC=15(cm).(9分)∴⊙O的半径是7.5cm.(10分)点评:本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.4.如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠B的度数.考点:切线的判定与性质;菱形的性质.分析:(1)连结OA、OB、OC、BD,根据切线的性质得OA⊥AB,即∠OAB=90°,再根据菱形的性质得BA=BC,然后根据“SSS”可判断△ABC≌△CBO,则∠BOC=∠OAC=90°,于是可根据切线的判定方法即可得到结论;(2)由△ABC≌△CBO得∠AOB=∠COB,则∠AOB=∠COB,由于菱形的对角线平分对角,所以点O在BD上,利用三角形外角性质有∠BOC=∠ODC+∠OCD,则∠BOC=2∠ODC,由于CB=CD,则∠OBC=∠ODC,所以∠BOC=2∠OBC,根据∠BOC+∠OBC=90°可计算出∠OBC=30°,然后利用∠ABC=2∠OBC计算即可.解答:(1)证明:连结OA、OB、OC、BD,如图,∵AB与⊙切于A点,∴OA⊥AB,即∠OAB=90°,∵四边形ABCD为菱形,∴BA=BC,在△ABC和△CBO中,∴△ABC≌△CBO,∴∠BOC=∠OAC=90°,∴OC⊥BC,∴BC为⊙O的切线;(2)解:∵△ABC≌△CBO,∴∠AOB=∠COB,∵四边形ABCD为菱形,∴BD平分∠ABC,CB=CD,∴点O在BD上,∵∠BOC=∠ODC+∠OCD,而OD=OC,∴∠ODC=∠OCD,∴∠BOC=2∠ODC,而CB=CD,∴∠OBC=∠ODC,∴∠BOC=2∠OBC,∵∠BOC+∠OBC=90°,∴∠OBC=30°,∴∠ABC=2∠OBC=60°.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了全等三角形相似的判定与性质以及菱形的性质.5.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.考点:切线的判定与性质;扇形面积的计算.专题:计
本文标题:2013年中考数学模拟试题汇编直线与圆的位置关系
链接地址:https://www.777doc.com/doc-2978786 .html