您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 2013年贵州省安顺市中考数学试卷(解析版)
第1页共12页2013年贵州省安顺市中考数学试卷(解析版)一.选择题(共10小题,每小题3分,满分30分)1.(2013安顺)计算﹣|﹣3|+1结果正确的是()A.4B.2C.﹣2D.﹣4考点:有理数的加法;绝对值.分析:首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.解答:解:﹣|﹣3|+1=﹣3+1=﹣2.故选C.点评:此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.2.(2013安顺)某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为()A.2.58×107元B.2.58×106元C.0.258×107元D.25.8×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2580000元用科学记数法表示为:2.58×106元.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2013安顺)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),故点在第四象限.故选D.点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.(2013安顺)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为()A.1B.﹣1C.2D.﹣2考点:一元二次方程的解.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解答:解:因为x=3是原方程的根,所以将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.5.(2013安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()第2页共12页A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC考点:全等三角形的判定.分析:求出AF=CE,再根据全等三角形的判定定理判断即可.解答:解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A.∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C.∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D.∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.点评:本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(2013安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米考点:勾股定理的应用.专题:应用题.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.第3页共12页点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.7.(2013安顺)若是反比例函数,则a的取值为()A.1B.﹣lC.±lD.任意实数考点:反比例函数的定义.专题:探究型.分析:先根据反比例函数的定义列出关于a的不等式组,求出a的值即可.解答:解:∵此函数是反比例函数,∴,解得a=1.故选A.点评:本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.8.(2013安顺)下列各数中,3.14159,,0.131131113…,﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个考点:无理数.专题:常规题型.分析:无限不循环小数为无理数,由此可得出无理数的个数.解答:解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.(2013安顺)已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是()A.9B.9.5C.3D.12考点:众数;中位数.专题:计算题.分析:先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:∵众数是9,∴x=9,从小到大排列此数据为:3,7,9,9,10,12,处在第3、4位的数都是9,9为中位数.所以本题这组数据的中位数是9.故选A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.第4页共12页10.(2013安顺)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°考点:圆周角定理.分析:由圆周角定理知,∠ACB=∠AOB=40°.解答:解:∵∠AOB=80°∴∠ACB=∠AOB=40°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二.填空题(共8小题,每小题4分,共32分)11.(2013安顺)计算:﹣++=.考点:实数的运算.专题:计算题.分析:本题涉及二次根式,三次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:﹣++=﹣6++3=﹣.故答案为﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.12.(2013安顺)分解因式:2a3﹣8a2+8a=.考点:提公因式法与公式法的综合运用.分析:先提取公因式2a,再对余下的多项式利用完全平方公式继续分解.解答:解:2a3﹣8a2+8a,=2a(a2﹣4a+4),=2a(a﹣2)2.故答案为:2a(a﹣2)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2013安顺)4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=.考点:二元一次方程的定义;解二元一次方程组.分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.第5页共12页解答:解:根据题意得:,解得:.则a﹣b=0.故答案是:0.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.14.(2013安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为.考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.15.(2013安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=.考点:相似三角形的判定与性质;平行四边形的性质.分析:由题可知△ABF∽△CEF,然后根据相似比求解.解答:解:∵DE:EC=1:2∴EC:CD=2:3即EC:AB=2:3∵AB∥CD,∴△ABF∽△CEF,∴BF:EF=AB:EC=3:2.∴BF:BE=3:5.点评:此题主要考查了平行四边形、相似三角形的性质.16.(2013安顺)已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.考点:解一元一次不等式.分析:因为不等式的两边同时除以1﹣a,不等号的方向发生了改变,所以1﹣a<0,再根据不等式的基本性质便可求出不等式的解集.解答:解:由题意可得1﹣a<0,移项得,﹣a<﹣1,化系数为1得,a>1.点评:本题考查了同学们解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.第6页共12页解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.17.(2013安顺)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.考点:坐标与图形变化-旋转.分析:画出旋转后的图形位置,根据图形求解.解答:解:AB旋转后位置如图所示.B′(4,2).点评:本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.18.(2013安顺)直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.考点:规律型:图形的变化类.分析:根据题意分析,找出规律解题即可.解答:解:第一次:2013+(2013﹣1)=2×2013﹣1,第二次:2×2013﹣1+2×2013﹣2=4×2013﹣3,第三次:4×2013﹣3+4×2013﹣4=8×2013﹣7.∴经过3次这样的操作后,直线上共有8×2013﹣7=16097个点.故答案为:16097.点评:此题主要考查了数字变化规律,根据已知得出点的变化规律是解题关键.三.解答题(共8小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(2013安顺)计算:2sin60°+2﹣1﹣20130﹣|1﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、绝对值、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2×+﹣1﹣(﹣1)=.第7页共12页点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、绝对值、负指数幂等考点的运算.20.(2013安顺)先化简,再求值:(1﹣)÷,其中a=﹣1.考点:分式的化简求值.专题:探究型.分析:先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.解答:解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的
本文标题:2013年贵州省安顺市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-2988268 .html