您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 2013教育部审定六上数学第五单元圆教案
数学六上第五单元圆教学计划内容分析:这一单元的内容是圆,在这个单元中,教材安排了“圆的认识”、“圆的周长和面积”、“扇形”四个具体的内容,这四个内容由易到难,层层深入。本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆和扇形的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。教学目标:1、学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。2、探索圆的周长与面积的计算方法中,获得探索问题成功的体验。3、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。4、学生认识扇形,掌握扇形的一些基本特征。5、通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。6、培养学生观察、比较、想象等能力,进一步发展学生的空间观念。教学重点:1、学生认识圆,知道圆的各部分名称.2、掌握圆的特征及在同一个圆里半径和直径的关系.3、初步学会用圆规画圆,培养学生的作图能力.4、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。5、认识扇形,理解圆心角,感受扇形的大小与圆心角的大小有关。课时安排:课时安排:12课时第一课时:圆的认识教学内容:课本第57-58页。教学目标:1、使学生认识圆,掌握圆的特征,了解圆各部分的名称,理解同一个圆内直径长度与半径的关系。2、掌握用圆规画圆的步骤和方法,学会画图。3、通过直观操作,进一步发展学生的空间观念,进行辩证唯物主义观念的启蒙教育。教学重点:认识圆,掌握圆的特征。教学难点:理解直径和半径的关系。教学过程:一、复习说出我们以前学过的有规则的平面图形有哪些?这些图形都是由什么样的线段围成的?二、新授。1、揭示课题。问:这是什么图形?(出示剪好的一个圆)用手摸一摸圆的外圈是线段还是用曲线围成的?出示课件,欣赏自然界中和生活中的形形色色的“圆”。师:圆在日常生活和工农业生产中应用非常广泛,小到手表里面的零件,大到宇宙飞船的制造都要用到圆的知识,我国古代数学家祖冲之对圆的研究就有伟大的成就,因此我们学习圆的有关知识是非常重要而又必要的。板书课题:“圆的认识”。2、引导学生画圆。让学生利用事先准备的工具,如茶杯盖、圆柱、圆锥、带圆孔的三角板等自由画一个圆,说说这样画的优点和局限性。指导学生用圆规画一个半径3厘米的圆。教师边讲解画圆的步骤和方法边示范。(1)定半径。把圆规的两脚分开,定好两脚间的距离,用幻灯片显示。(2)定圆心。把有针尖的一脚固定在一点上,定圆心即定所画圆的位置,在画圆时要考虑,上下左右的位置。(3)画圆。把装有铅笔的一只脚旋转一周,画出一个圆,(用直尺画出半径,标出圆心,半径,并用字母O和R表示)3、认识圆的特征和圆各部分的名称,师生一起操作进行。(1)认识圆心:将剪好的圆拿出来,先对折,打开,换方向后再对折,再打开,反复折几次,折过若干次后。问:像这样折可以折多少次?(无数次)问:这些折痕意在圆的什么地方相交?(这些折痕意是在圆中心这一点相交)老师指出,我们把圆中心的这一点叫做圆心。圆心一般用字母O表示。指导学生在自备圆中心标出圆心,用字母O表示:(2)认识半径:指导学生从圆心到圆上任意一点用直尺连一条线段,老师讲解并板书,连接圆心到圆上任意一点的线段叫做半径,一般用字母F表示:问:从圆心到圆上任意一点的线段,在同一个圆里可以画多少条?问:量一量,半径长几厘米?同一个圆里所有的半半径长度都相等吗?(3)认识直径:指导学生把圆形再对折然后打开,让学生把这条折痕用直尺画出来,看看每条折痕都从圆的什么地方通过?两端都在圆的什么地方?口答后教师指出同时板书,通过圆心,并且两端都在圆上的线段叫做直径,用字母D表示。问:在同一个圆里,可以画多少条直径?问:量一量,直径长几厘米?在同一个圆里所有直径的长度都相等吗?4、同一个圆里直径的长度与半径的关系:问:刚才我们量了同一个圆里半径和直径的长度,谁能说出同一个圆里直径长度与半径的关系?让学生比较所画的圆,由于半径的长短不同,所画圆的大小也不同。问:圆的位置是根据什么来确定的?圆的大小根据什么确定的?三、巩固练习1.让学生阅读课文第57――58页全部内容,巩固所学知识。2、判断题:(1)画圆时,圆规两脚间的距离是半径的长度.()(2)两端都在圆上的线段,叫做直径.()(3)圆心到圆上任意一点的距离都相等.()(4)半径2厘米的圆比直径3厘米的圆大.()(5)所有圆的半径都相等.()(6)在同一个圆里,半径是直径的.()(7)在同一个圆里,所有直径的长度都相等.()(8)两条半径可以组成一条直径.()3、做课本第58页“做一做”中的题,练习十三第1—5题。四、小结。教师:今天学了哪些知识?圆的各部分的名称各是什么?圆的特征是什么?怎样画圆?五、作业本第42页。板书设计:教学反思:第二课时:与圆有关的轴对称图形教学内容:课本第59页。教学目标:1、认识轴对称图形,能找出轴对称图形的对称轴,正确画出对称轴,加深对平面图形的认识。2、通过观察,思考和动手操作,培养实践能力,发展空间观念。3、培养学生独立探索,相互合作交流的能力。教学重、难点:利用圆的对称性画出与圆有关的轴对称图形的另一半。教学过程:一、复习回顾,迁移导入教师让学生拿出准备的各种图形图片,说说各是什么图形。课件展示:树叶,蜻蜓和天平的实物图,让学生观察分析,看他们有什么共同特点,并说说在生产生活中还有哪些物体具有这种特点。圆否也有这样的特点呢?板书:有关的轴对称图形二、探究新知1、实验。教师拿出准好的纸,把它对折,在折好的一侧化一个图形,用剪刀剪下来,打开,让学生看看得到的图形有什么特点。指出:像我们这样剪出来的图形,如果它沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫对称轴。2、拿出准备好的长方形、正方形、平行四边形、等边三角形、梯形的纸片。教师:折折看,那些事轴对称图形?画出它们的对称轴。学生操作后交流,分组汇报。3、让学生讨论圆是否是轴对称图形。折一折,圆是否是轴对称图形?画一画,圆的对称轴是什么?圆有多少条对称轴?4、学生小结轴对称图形的特点。5、教学轴对称图形的性质。让学生拿出直尺,量一量每个轴对称图形的对称轴左、右两侧相对的点到对称轴的距离。你发现了什么规律?小结:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。6、课件出示教材第五十九页上最上面的一个图。(1)教师:请利用圆的对称性,用圆规和直尺一步一步的画出这个图案,提醒注意有关事项。(2)学生观察图案的特点,先小组内交流,再独立操作。学生分小组派代表上台成果展示。(3)教师指名说说画图的步骤,带领全班一步步画出这个图案。三、巩固练习1、用直尺和圆规画出下面的图形,书上第五十九页。学生独立完成,教师巡视,指导学生画图。2、完成书上练习十三的第7、8题学生小组讨论,交流,观察得出各组图形分别有几条对称轴,再动手画一画。教师强调:当图形中有无数条对称轴时,只需画几条代表,在图形旁边标出“无数条”即可。四、总结。这节课你学习了什么内容?有什么新的收获?五、作业本第43页。板书设计:教学反思:第三课时:圆的周长教学内容:课本第62—64页。教学目标:1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.2.培养学生的观察、比较、分析、综合及动手操作能力.3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.4.结合圆周率的学习,对学生进行爱国主义教育.教学重点:推导并总结出圆周长的计算公式。教学难点:深入理解圆周率的意义。教学过程:一、创设情境,引起猜想:认识圆的周长教师:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?二、探究新知(一)迁移类推。要求小黄狗的跑的路程,实际上就是求这个正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?要求小灰狗所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(完成板书:围成圆的曲线的长叫做圆的周长。)(二)实际感知。1、教师:圆桌和菜板都有点开裂了,需要在它们周围箍上一圈铁皮,分别需要多少铁皮?怎么办?同桌之间相互讨论办法。2、测量圆的周长。(1)用直尺接测量圆的周长,方便吗?为什么?(用铁丝圆演示)有办法把这条曲线变直吗?把它截断展开拉直以后,它就变成了什么?媒体演示“化曲为直”的过程。现在可以得到这个圆的周长了吗?只要怎样就行?(2)(出示一教具圆片)这个圆的圆周要展开就么麻烦了,用什么方法也可以“化曲为直”,测量出它的周长呢?师生合作演示“用绕线的方法测量一个圆片的周长”,并指导操作要点。同桌合作用这种方法测量出一个圆片的周长,结果精确到0.1厘米,并把它记录在表格中。媒体演示:圆滚动一周的长就是圆的周长,同桌再次合作,用高效能动的方法测量出另一圆片的周长,结果处理同上。(3)指名一生上台用绕线或滚动的方法测量出黑板上一个圆周长(预先在黑板上画好)。指出这两种方法均有一定的局限性,需要我们去探讨出一种求圆周长的普遍规律。(三)引导发现圆的周长与直径的关系。1、圆的周长与什么有关系?启发思考:正方形的周长与它的边长有关系,周长是边长的4倍,那么圆的周长是否也与圆内某条线段长有关,也存在着一定的倍数关系呢?圆的周长与直径有什么关系?(1)测量计算。A、同桌之间相互分工,测量出一些圆形物体的直径和周长,并把相应的数据填在表格中。B、请一个小组的四个同学分别汇报出“圆的周长”、“直径”、“周长除以直径所得的商”三个数据,教师依次填写在黑板的表格中。测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的比值关系(2)观察这些数据,能发现什么吗?总结:这四个圆,每个圆的周长是它直径的3倍多一些。媒体演示:屏幕上大小不同的三个圆,用每个圆直径分别去度量它的周长。得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。(3)引导概括。其实,任何一个圆的迥长都是它直径的3倍多一些。即圆的周长总是直径的3倍多一些,这不是圆的周长与直径的关系。2、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。(1)表示这个3倍多一些的数,是一个固定不变的数,我们它为圆周率,用式子表示就是:圆的周长÷直径=圆周率(板书)(2)介绍的读写法。(3)结合前面,朗读介绍祖冲之及圆周率的有关知识。同时指出:圆周率是一个无限不循环的小数,也就是说它的小数部分是无限的又无规律的。尽管现在人们可以用计算机计算出它的小数点后面上亿位;但是这个数还是永远写不完的。我们只能取它的近似值进行计算,一般取两位小数,即≈3.14,也就是说,圆的周长大约是直径的多少倍?(四)归纳圆的周长计算公式。1、现在要得到黑板上这个圆的周长,我们只要测量出它的什么就可以计算出来了?已知一个圆的直径,该怎样计算它的周长?为什么?板书;圆的周长=直径×圆周率,用字母表示,就是C=d。计算直径为1分米圆的周长。2、教学例1。出示例题,学生尝试解,统一订正。3、计算下面两个圆的周长。(1)D=4厘米(2)R=2.5厘米三、巩固练习。1、阅读课本第62--64页。2、课本第64页上面“做一做”中的题。四、小结。今天学了
本文标题:2013教育部审定六上数学第五单元圆教案
链接地址:https://www.777doc.com/doc-2991169 .html