您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013泰州中考数学解析
江苏省泰州市2013年中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)(2013•泰州)﹣4的绝对值是()A.4B.C.﹣4D.±4考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣4的绝对值是4,故选:A.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•泰州)下列计算正确的是()A.4B.C.2=D.3考点:二次根式的加减法;二次根式的性质与化简.分析:根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.解答:解:A、4﹣3=,原式计算错误,故本选项错误;B、与不是同类二次根式,不能直接合并,故本选项错误;C、2=,计算正确,故本选项正确;D、3+2≠5,原式计算错误,故本选项错误;故选C.点评:本题考查了二次根式的加减,解答本题的关键掌握二次根式的化简及同类二次根式的合并.3.(3分)(2013•泰州)下列一元二次方程中,有两个不相等实数根的方程是()A.x2﹣3x+1=0B.x2+1=0C.x2﹣2x+1=0D.x2+2x+3=0考点:根的判别式.专题:计算题.分析:计算出各项中方程根的判别式的值,找出大于0的选项即可.解答:解:A、这里a=1,b=﹣3,c=1,∵△=b2﹣4ac=5>0,∴方程有两个不相等的实数根,本选项符合题意;B、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣2,c=1,∵△=b2﹣4ac=0,∴方程有两个相等的实数根,本选项不合题意;D、这里a=1,b=2,c=3,∵△=b2﹣4ac=﹣5<0,∴方程没有实数根,本选项不合题意;故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.4.(3分)(2013•泰州)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2013•泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(3分)(2013•泰州)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)考点:概率的意义;随机事件.分析:根据随机事件,必然事件,不可能事件分别求出P(A)、P(B)、P(C),然后排序即可得解.解答:解:事件A:打开电视,它正在播广告是随机事件,0<P(A)<1;事件B:抛掷一个均匀的骰子,朝上的点数小于7是必然事件,P(B)=1;事件C:在标准大气压下,温度低于0℃时冰融化是不可能事件,P(C)=0,所以,P(C)<P(A)<P(B).故选B.点评:本题考查了概率的意义,必然发生的事件就是一定发生的事件,因而概率是1.不可能发生的事件就是一定不会发生的事件,因而概率为0.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.二、填空题(本大题共10小题,每小题3分,满分30分。请把答案直接填写在答题卡相应位置上。)7.(3分)(2013•泰州)9的平方根是±3.考点:平方根.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.8.(3分)(2013•泰州)计算:3a•2a2=6a3.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a•2a2=3×2a•a2=6a3.故答案为:6a3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.(3分)(2013•泰州)2013年第一季度,泰州市共完成工业投资22300000000元,22300000000这个数可用科学记数法表示为2.23×1010.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:22300000000=2.23×1010.故答案为:2.23×1010.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2013•泰州)命题“相等的角是对顶角”是假命题(填“真”或“假”).考点:命题与定理.分析:对顶角相等,但相等的角不一定是对顶角,从而可得出答案.解答:解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假.点评:此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.11.(3分)(2013•泰州)若m=2n+1,则m2﹣4mn+4n2的值是1.考点:完全平方公式.专题:计算题.分析:所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.解答:解:∵m=2n+1,即m﹣2n=1,∴原式=(m﹣2n)2=1.故答案为:1点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.(3分)(2013•泰州)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.考点:中位数.分析:根据中位数的定义找出第20和21个数的平均数,即可得出答案.解答:解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.13.(3分)(2013•泰州)对角线互相垂直的平行四边形是菱形.考点:菱形的判定.分析:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形,根据以上内容填上即可.解答:解:对角线互相垂直的平行四边形是菱形,故答案为:垂直.点评:本题考查了对菱形的判定的应用,注意:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形.14.(3分)(2013•泰州)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为6cm.考点:线段垂直平分线的性质.专题:数形结合.分析:根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.解答:解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.点评:本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.15.(3分)(2013•泰州)如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为(,﹣4).考点:位似变换;坐标与图形性质.分析:根据位似图形的性质画出图形,利用对应边之间的关系得出B′点坐标即可.解答:解:过点B作BE⊥x轴于点E,B′作B′F⊥x轴于点F,∵点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),∴==,AE=1,EO=2,BE=3,∴==,∴=,解得:AF=,∴EF=,∴FO=2﹣=,∵=,解得:B′F=4,则点B′的坐标为:(,﹣4).故答案为:(,﹣4).点评:此题主要考查了位似图形的性质以及相似三角形的性质,根据已知得出对应边之间的关系是解题关键.16.(3分)(2013•泰州)如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5cm或2cm≤d<3cm.考点:圆与圆的位置关系.分析:根据两圆内切和外切时,求出两圆圆心距,进而得出d的取值范围.解答:解:连接OP,∵⊙O的半径为4cm,1cm为半径的⊙P,⊙P与⊙O没有公共点,∴d>5cm时,两圆外离,当两圆内切时,过点O作OD⊥AB于点D,O′P=4﹣1=3cm,OD==2(cm),∴以1cm为半径的⊙P与⊙O没有公共点时,2cm≤d<3cm,故答案为:d>5cm或2cm≤d<3cm.点评:此题主要考查了圆与圆的位置关系,根据图形进行分类讨论得出是解题关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(2013•泰州)(1)计算:()﹣1+|3tan30°﹣1|﹣(π﹣3)0;(2)先化简,再求值:,其中x=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据负指数幂、特殊角的三角函数值、0指数幂的定义解答即可;(2)将括号内的部分通分,再将除法转化为乘法,然后代入求值.解答:解:(1)原式=+|3×﹣1|﹣1=2+|﹣1|﹣1=1+﹣1=;(2)原式=÷()=÷=•=.当x=﹣3时,原式===.点评:(1)本题考查了实数的运算,涉及负指数幂、特殊角的三角函数值、0指数幂的定义,是一道简单的杂烩题;(2)本题考查了分式的化简求值,熟悉通分、约分和分式的加减是解题的关键.18.(8分)(2013•泰州)解方程:.考点:解分式方程.分析:观察可得最简公分母是2(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:﹣=,方程两边同时乘以x(x﹣2)得:2(x+1)(x﹣2)﹣x(x+2)=x2﹣2,化简得:﹣4x=2,解得:x=﹣,把x=﹣代入x(x﹣2)=≠0,故方程的解是:x=﹣.点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要
本文标题:2013泰州中考数学解析
链接地址:https://www.777doc.com/doc-2992331 .html