您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2012年广西贵港市中考数学试卷(解析版,有25~26题解析)
2012年贵港市初中毕业升学考试试卷数学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分)注意:答案一律填写在答题卡上,在试题卷上作答无效。考试结束将本试卷和答题卡一并交回。第Ⅰ卷(选择题,共36分)一、我会选择(本大题共12小题,每小题3分,共36分)每小题都给出标号为A、B、C、D的四个选项,其中只有一个是正确的,请考生用2B铅笔将答题卡上将选定的答案标号涂黑。1.-2的倒数是A.-2B.2C.-12D.12【考点】倒数.【分析】根据倒数定义可知,-2的倒数是-12.【解答】-2的倒数是-12.故选C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(-2a)2-3a2的结果是A.-a2B.a2C.-5a2D.5a2【考点】幂的乘方与积的乘方;合并同类项.【分析】首先利用积的乘方的性质求得(-2a)2=4a2,再合并同类项,即可求得答案.【解答】(-2a)2-3a2=4a2-3a2=a2.故选B.【点评】此题考查了积的乘方与合并同类项.此题难度不大,注意掌握指数与符号的变化是解此题的关键.3.在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。则关于这组数据的说法不正确...的是A.极差是3B.平均数是8C.众数是8和9D.中位数是9【考点】极差;算术平均数;中位数;众数.【分析】根据极差,中位数,平均数和众数的定义分别计算即可解答.【解答】A.极差是9-6=3,故此选项正确,不符合题意.B.平均数为(6+8+9+8+9)÷5=8,故此选项正确,不符合题意;C.∵8,9各有2个,∴众数是8和9,故此选项正确,不符合题意;D.从低到高排列后,为6,8,8,9,9.中位数是8,故此选项错误,符合题意;故选:D.【点评】本题考查了统计知识中的极差,中位数,平均数和众数和平均数的定义,熟练掌握上述定义的计算方法是解答本题的关键.4.下列各点中在反比例函数y=6x的图像上的是A.(-2,-3)B.(-3,2)C.(3,-2)D.(6,-1)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征k=xy,只有xy=6才符合要求,进行验证即可.【解答】根据反比例函数y=6x,即可得出xy=6,利用所给答案只有(-2)×(-3)=6,∴只有A符合要求,故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,根据xy=6直接判断是解题关键.所有在反比例函数上的点的横纵坐标的积应等于比例系数。5.如果仅用一种多边形进行镶嵌,那么下列正多边形不能够...将平面密铺的是A.正三角形B.正四边形C.正六边形D.正八边形【考点】平面镶嵌(密铺).【专题】常规题型.【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.【解答】A.正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B.正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C.正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D.正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;故选D.【点评】本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是A.2B.3C.4D.5【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.主视图左视图俯视图第6题图解析版【解答】综合三视图可知,这个几何体的底层有3个小正方体,第二层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1=4个.故选:C.【点评】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于A.55B.52C.32D.12【考点】锐角三角函数的定义;坐标与图形性质;勾股定理.【专题】计算题.【分析】过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.【解答】如图,过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=OC2+AC2=5,∴sin∠AOB=ACOA=15=55.故选A.【点评】本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.8.如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),则关于x的不等式x+m>kx-1的解集在数轴上表示正确的是A.B.C.D.【考点】一次函数与一元一次不等式;在数轴上表示不等式的解集.【分析】根据图象和交点坐标得出关于x的不等式x+m>kx-1的解集是x>-1,即可得出答案.【解答】∵直线y1=x+m与y2=kx-1相交于点P(-1,1),∴根据图象可知:关于x的不等式x+m>kx-1的解集是x>-1,在数轴上表示为:。故选B.【点评】本题考查了一次函数与一元一次不等式,在数轴上表示不等式的解集,主要培养学生的观察图象的能力和理解能力.9.从2、-1、-2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过...第三象限的概率是:A.13B.12C.23D.1【考点】概率公式;一次函数图象与系数的关系.【分析】由于y=kx+1,所以当直线不经过第三象限时k<0,由于一共有3个数,其中小于0的数有2个,容易得出事件A的概率为23.【解答】∵y=kx+1,当直线不经过第三象限时k<0,其中3个数中小于0的数有2个,因此概率为23.故选C.【点评】本题考查一次函数的性质和等可能事件概率的计算.用到的知识点为:概率=所求情况数与总情况数之比.当一次函数y=kx+b不经过第三象限时k<0.10.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是A.80°B.110°C.120°D.140°【考点】切线的性质;圆周角定理.【专题】计算题.【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,∵圆周角∠ADB与圆心角∠AOB都对弧AB,∴∠ADB=12∠AOB=70°,又∵四边形ACBD为圆内接四边形,∴∠ADB+∠ACB=180°,则∠ACB=110°.故选B。【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.11.如图,在直角梯形ABCD中,AD//BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于A.10B.11C.12D.13【考点】全等三角形的判定与性质;直角梯形;旋转的性质.【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求0-10-10-10-10-1OPAB第10题图CDOxyAB第7题图C第8题图Oxyy2y1P出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,∵AD∥BC,∠C=90°,∴∠C=∠ADC=∠ANC=90°,∴四边形ANCD是矩形,∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,∴BN=9-5=4,∵∠M=∠EAB=∠MAN=∠ANB=90°,∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,∴∠EAM=∠NAB,∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,∴△EAM≌△BNA(AAS),∴EM=BN=4,∴△ADE的面积是12×AD×EM=12×5×4=10.故选A.【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.12.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长DE到H使DE=BM,连接AM、AH。则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=34AM2。其中正确结论的个数是A.1B.2C.3D.4【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④错误.【解答】在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC-BE=CD-CF,即CE=DF,在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°-∠DMF=180°-60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=12AM·32AM=34AM2,∴S四边形ABMD=34AM2,S四边形ABCD≠S四边形ABMD,故④小题错误,
本文标题:2012年广西贵港市中考数学试卷(解析版,有25~26题解析)
链接地址:https://www.777doc.com/doc-2998454 .html