您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2012年高考真题数学理(北京卷)word版含答案
第1页共9页2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页.150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)选择题共8小题。每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.已知集合A={x∈R|3x+20﹜·B={x∈R|(x+1)(x-3)0﹜则A∩B=()A.(﹣∞,﹣1)B.{﹣1,-⅔}C.﹙﹣⅔,3﹚D.(3,+∝)2.设不等式组表示的平面区域为D.在区域D内随机取一个点.则此点到坐标原点的距离大于2的概率是()A.B.C.D.3.设a,b∈R.“a=O”是‘复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2B.4C.8D.165.如图.∠ACB=90º。CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE·CB=AD·DBB.CE·CB=AD·ABC.AD·AB=CD²D.CE·EB=CD²6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24B.18C.12D.67.某三梭锥的三视图如图所示,该三梭锥的表面积是()A.28+6第2页共9页B.30+6C.56+12D.60+128.某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为()A.5B.7C.9D.11第二部分(非选择题共110分)二.填空题共6小题。每小题5分。共30分.9.直线(t为参数)与曲线(“为多α数)的交点个数为10.已知﹛﹜等差数列为其前n项和.若=,=,则=11.在△ABC中,若α=2,b+c=7,=-,则b=12.在直角坐标系xOy中.直线l过抛物线=4x的焦点F.且与该撇物线相交于A、B两点.其中点A在x轴上方。若直线l的倾斜角为60º.则△OAF的面积为13.己知正方形ABCD的边长为l,点E是AB边上的动点.则.的值为14.已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同时满足条件:①x∈R,f(x)<0或g(x)<0②x∈(﹣∝,﹣4),f(x)g(x)<0则m的取值范围是三、解答题公6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15.(本小题共13分)已知函数。求f(x)的定义域及最小正周期;求f(x)的单调递增区间。16.(本小题共14分)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥第3页共9页BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.求证:A1C⊥平面BCDE;若M是A1D的中点,求CM与平面A1BE所成角的大小;线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由17.(本小题共13分)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);试估计厨余垃圾投放正确的概率;试估计生活垃圾投放错误的概率;假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a﹥0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值。(求:,其中为数据x1,x2,…,xn的平均数)18.(本小题共13分)已知函数f(x)=ax2+1(a0),g(x)=x3+bx若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值,19.(本小题共14分)已知曲线C:(5-m)x2+(m-2)y2=8(m∈R)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。20.(本小题共13分)第4页共9页设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。对如下数表A,求K(A)的值;11-0.80.1-0.3-1(2)设数表A∈S(2,3)形如11cab-1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。答案一、选择题题号12345678答案DDBCABBC二、填空题题号91011121314答案21;24nn431;142,三、解答题15.解:(sincos)sin2(sincos)2sincos()2(sincos)cossinsinxxxxxxxfxxxxxxπsin21cos22sin21|π4xxxxxkkZ,,(1)原函数的定义域为|πxxkkZ,,最小正周期为π.(2)原函数的单调递增区间为πππ8kk,kZ,3πππ8kk,kZ16.第5页共9页解:(1)CDDE,1AEDEDE平面1ACD,又1AC平面1ACD,1ACDE又1ACCD,1AC平面BCDEzyxA1(0,0,23)D(-2,0,0)E(-2,2,0)B(0,3,0)C(0,0,0)M(2)如图建系Cxyz,则200D,,,0023A,,,030B,,,220E,,∴10323AB,,,1210AE,,设平面1ABE法向量为nxyz,,则1100ABnAEn∴323020yzxy∴322zyyx∴123n,,又∵103M,,∴103CM,,∴1342cos2||||14313222CMnCMn∴CM与平面1ABE所成角的大小45(3)设线段BC上存在点P,设P点坐标为00a,,,则03a,则1023APa,,,20DPa,,第6页共9页设平面1ADP法向量为1111nxyz,,则111123020ayzxay∴11113612zayxay∴1363naa,,假设平面1ADP与平面1ABE垂直则10nn,∴31230aa,612a,2a∵03a∴不存在线段BC上存在点P,使平面1ADP与平面1ABE垂直17.()由题意可知:4002=6003()由题意可知:200+60+403=100010()由题意可知:22221(120000)3sabc,因此有当600a,0b,0c时,有280000s.18.解:()由1c,为公共切点可得:2()1(0)fxaxa,则()2fxax,12ka,3()gxxbx,则2()=3fxxb,23kb,23ab又(1)1fa,(1)1gb,11ab,即ab,代入①式可得:33ab.(2)24ab,设3221()()()14hxfxgxxaxax则221()324hxxaxa,令()0hx,解得:12ax,26ax;0a,26aa,第7页共9页原函数在2a,单调递增,在26aa,单调递减,在6a,上单调递增①若12a≤,即2a≤时,最大值为2(1)4aha;②若126aa,即26a时,最大值为12ah③若16a≥时,即6a≥时,最大值为12ah.综上所述:当02a,时,最大值为2(1)4aha;当2,a时,最大值为12ah.19.(1)原曲线方程可化简得:2218852xymm由题意可得:8852805802mmmm,解得:752m(2)由已知直线代入椭圆方程化简得:22(21)16240kxkx,2=32(23)k,解得:232k由韦达定理得:21621MNkxxk①,22421MNxxk,②设(,4)NNNxkx,(,4)MMMxkx,(1)GGx,MB方程为:62MMkxyxx,则316MMxGkx,,316MMxAGxk,,2NNANxxk,,欲证AGN,,三点共线,只需证AG,AN共线即3(2)6MNNMxxkxxk成立,化简得:(3)6()MNMNkkxxxx将①②代入易知等式成立,则AGN,,三点共线得证。第8页共9页20.解:(1)由题意可知11.2rA,21.2rA,11.1cA,20.7cA,31.8cA∴0.7kA(2)先用反证法证明1kA≤:若1kA则1|||1|11cAaa,∴0a同理可知0b,∴0ab由题目所有数和为0即1abc∴11cab与题目条件矛盾∴1kA≤.易知当0ab时,1kA存在∴kA的最大值为1(3)kA的最大值为212tt.首先构造满足21()2tkAt的,{}(1,2,1,2,...,21)ijAaijt:1,11,21,1,11,21,211...1,...2tttttaaaaaat,22,12,22,2,12,22,211...,...1(2)ttttttaaaaaatt.经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2trArAt,2121121|()||()|...|()|11(2)22tttttcAcAcAtttt,1221121|()||()|...|()|122tttttcAcAcAtt.下面证明212tt是最大值.若不然,则存在一个数表(2,21)ASt,使得21()2tkAxt.由()kA的定义知A的每一列两个数之和的绝对值都不小于x,而两个绝对值不超过1第9页共9页的数的和,其绝对值不超过2,故A的每一列两个数之和的绝对值都在区间[,2]x中.由于1x,故A的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x.设A中有g列的列和为正,有h列的列和为负,由对称性不妨设gh,则,1gtht.另外,由对称性不妨设A的第一行行和为正,第二行行和为负.考虑A的第一行,由前面结论知A的第一行有不超过t个正数和不少于1t个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x(即每个负数均不超过1x).因此11|()|()1(1)(1)21(1)21(2)rArAttxttxxttxx,故A的第一行行和的绝对值小于x,与假设矛盾.因此kA的
本文标题:2012年高考真题数学理(北京卷)word版含答案
链接地址:https://www.777doc.com/doc-3003494 .html