您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2014-2015学年高中数学(人教A版)选修2-1练习111命题]
第一章1.1第1课时一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0B.1C.2D.3[答案]C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a1,则函数f(x)=ax是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案]B[解析]当a1时,指数函数f(x)=ax是增函数,故“若a1,则函数f(x)=ax是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案]D[解析]验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.4.(2013·河北省衡水中学月考)给定下列命题:①若k0,则方程x2+2x-k=0有实数根;②若ab0,cd0,则acbd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中是真命题的是()A.①②③B.①②④C.①③④D.②③④[答案]B[解析]①中Δ=4-4(-k)=4+4k0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A.a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若a·b=a·c,则b=c[答案]B[解析]A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c)6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形[答案]C[解析]该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.二、填空题7.下面是关于四棱柱的四个命题:①如果有两个侧面垂直于底面,则该四棱柱为直四棱柱;②如果两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③如果四个侧面两两全等,则该四棱柱为直四棱柱;④如果四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是________(写出所有真命题的编号).[答案]②④[解析]②中由过相对侧棱截面的交线垂直于底面并与侧棱平行,可知命题成立,④中由题意,可知对角面均为长方形,即可证命题成立.①、③错误,反例如有一对侧面与底面垂直的斜四棱柱.8.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.[答案]0[解析]∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c不一定共面,∴命题④不正确.综上所述,真命题的个数为0.三、解答题9.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)△ABC中,若∠A=∠B,则sinA=sinB;(3)余弦函数是周期函数吗?(4)求证:当x∈R时,方程x2+x+2=0无实根.[解析](1)是命题,真命题.(2)是命题,真命题.(3)、(4)不是命题.10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.[解析](1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)“若一个数是整数,则它的平方是非负整数”,真命题.(3)“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.一、选择题11.(2013·湖北省武昌实验中学月考)“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[答案]A[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.12.设α、β、γ为两两不重合的平面,c、m、n为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c⊂α,则c∥β;③如果α∩β=c,β∩γ=m,γ∩α=n,c∥γ,则m∥n.其中真命题个数是()A.0个B.1个C.2个D.3个[答案]C[解析]①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c⊂α,∴c与β无公共点,∴c∥β,故②正确;由c∥γ,c⊂β,β∩γ=m得c∥m,同理可得c∥n,∴m∥n,故③正确.13.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB.若方程ax2+bx+c=0(a≠0)的两根同号,则ca0C.如果M⊆N,那么M∪N=MD.在△ABC中,若AB→·BC→0,则△ABC为锐角三角形[答案]B[解析]y=sin2x=1-cos2x2,T=2π2=π,故A为假命题;当M⊆N时,M∪N=N,故C为假命题;当AB→·BC→0时,向量AB→与BC→的夹角为锐角,B为钝角,故D为假命题.14.(2013·广东文,10)设a是已知的平面向量且a≠0.关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+μc;③给定向量b和正数μ,总存在单位向量c,使a=λb+μc.④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μc.上述命题中的向量b、c和a在同一平面内,且两两不共线,则真命题的个数是()A.1B.2C.3D.4[答案]C[解析]对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,可设e与b是不共线单位向量,则存在实数λ,y使a=λb+ye,若y0,则取μ=y,c=e,若y0,则取μ=-y,c=-e,故③正确;④显然错误,给定正数λ和μ,不一定满足“以|a|,|λb|,|μc|为三边长可以构成一个三角形”,这里单位向量b和c就不存在.可举反例:λ=μ=1,b与c垂直,此时必须a的模为2才成立.二、填空题15.给出下列四个命题:①若ab0,则1a1b;②若ab0,则a-1ab-1b;③若ab0,则2a+ba+2bab;④若a0,b0,且2a+b=1,则2a+1b的最小值为9.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案]②④[解析]①在ab0两端同乘以1ab可得1b1a,故①错;②由于a-1a-b-1b=(a-b)1+1ab0,故②正确;③由于2a+ba+2b-ab=b2-a2a+2bb0,即2a+ba+2bab,故③错;④由2a+1b=2a+1b·(2a+b)=5+2ba+2ab≥5+22ba·2ab=9,当且仅当2ba=2ab,即a=b=13时取得等号,故④正确.16.(2013·湖北省襄阳五中月考)已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:①若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;②若a2-b0,则f(x)在区间[a,+∞)上是增函数;③当x=a时,f(x)有最小值b-a2;④当a2-b≤0时,f(x)有最小值b-a2.其中正确命题的序号是________.[答案]①④[解析]由题意知f(x)=|x2-2ax+b|=|(x-a)2+b-a2|.若a2-b≤0,则f(x)=|(x-a)2+b-a2|=(x-a)2+b-a2,可知f(x)在区间[a,+∞)上是增函数,所以①正确,②错误;只有在a2-b≤0的条件下,才可能在x=a时,f(x)取最小值b-a2,所以③错误,④正确.三、解答题17.把下列命题改写成“若p,则q”的形式.(1)acbc⇒ab;(2)当m14时,mx2-x+1=0无实根;(3)方程x2-2x-3=0的解为x=3或x=-1.[解析](1)若acbc,则ab.(2)若m14,则mx2-x+1=0无实根.(3)若x2-2x-3=0,则x=3或x=-1.18.已知命题p:lg(x2-2x-2)≥0;命题q:0x4,若命题p是真命题,命题q是假命题,求实数x的取值范围.[解析]由lg(x2-2x-2)≥0,得x2-2x-2≥1,即x2-2x-3≥0.解得x≤-1或x≥3.故命题p:x≤-1或x≥3.又命题q:0x4,且命题p为真,命题q为假,则x≤-1或x≥3x≤0或x≥4,所以x≤-1或x≥4.所以,满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).
本文标题:2014-2015学年高中数学(人教A版)选修2-1练习111命题]
链接地址:https://www.777doc.com/doc-3004695 .html