您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 2012高考总复习《走向清华北大》精品30
1第三十讲数列求和班级________姓名________考号________日期________得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400解析:S100=1-5+9-13+…+(4×99-3)-(4×100-3)=50×(-4)=-200.答案:B2.数列1,11+2,11+2+3,…,11+2+…+n的前n项和为()A.2n2n+1B.2nn+1C.n+2n+1D.n2n+1解析:该数列的通项为an=2n(n+1),分裂为两项差的形式为an=21n-1n+1,令n=1,2,3,…,则Sn=21-12+12-13+13-14+…+1n-1n+1.∴Sn=21-1n+1=2nn+1.答案:B3.设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于()A.27(8n-1)B.27(8n+1-1)C.27(8n+3-1)D.27(8n+4-1)解析:f(n)为等比数列{23n-2}的前n+4项的和,首项为2,公比为8,故f(n)=2(1-8n+4)1-8=27(8n+4-1).答案:D4.若数列{an}的前n项和为Sn,且满足Sn=32an-3,则数列{an}的前n项和Sn等于()A.3n+1-3B.3n-3C.3n+1+3D.3n+32解析:∵Sn=32an-3,∴Sn+1=32an+1-3,两式相减得:Sn+1-Sn=32(an+1-an).即an+1=32(an+1-an),∴an+1an=3.又∵S1=32a1-3,即a1=32a1-3,∴a1=6.∴an=a1·qn-1=6×3n-1=2×3n.∴Sn=32an-3=32×2×3n-3=3n+1-3,故应选A.答案:A5.数列112,314,518,7116,…,(2n-1)+12n,…的前n项和Sn的值等于()A.n2+1-12nB.2n2-n+1-12nC.n2+1-12n-1D.n2-n+1-12n解析:该数列的通项公式为an=(2n-1)+12n,则Sn=[1+3+5+…+(2n-1)]+12+122+…+12n=n2+1-12n.故选A.答案:A6.数列an=1n(n+1),其前n项之和为910,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.-10B.-9C.10D.9解析:设数列{an}的前n项和为Sn,则Sn=a1+a2+…+an,又∵an=1n-1n+1,∴Sn=1-12+12-13+…+1n-1n+1=nn+1,又∵nn+1=910,∴n=9,∴原题变为求10x+y+9=0在y轴上的截距,令x=0,得y=-9,∴直线在y轴上的截距为-9.故选B.答案:B二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.已知函数f(x)对任意x∈R,都有f(x)=1-f(1-x),则f(-2)+f(-1)+f(0)+f(1)+3f(2)+f(3)=________.解析:由条件可知:f(x)+f(1-x)=1.而x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴f(-2)+f(-1)+…+f(2)+f(3)=3.答案:38.12+222+323+424+…+n2n-2等于________.解析:设S=12+222+323+…+n2n,则12S=122+223+…+n-12n+n2n+1.相减,得12S=12+122+…+12n-n2n+1=121-12n1-12-n2n+1.∴S=2-12n-1-n2n.∴原式=-12n-1-n2n.答案:-12n-1-n2n9.数列112+2,122+4,132+6,142+8…的前n项和等于________.解析:an=1n2+2n=121n-1n+2,∴Sn=121-13+12-14+13-15+…+1n-1n+2=121+12-1n+1-1n+2=34-2n+32(n+1)(n+2).答案:34-2n+32(n+1)(n+2)410.函数f(n)=n2(n为奇数)-n2(n为偶数),且an=f(n)+f(n+1),则a1+a2+…+a1000=__________.解析:a2n=f(2n)+f(2n+1)=-4n2+(2n+1)2=4n+1,a2n-1=f(2n-1)+f(2n)=-(2n)2+(2n-1)2=-4n+1所以数列的前1000项和可分为两部分:(a1+a3+a5+…+a999)+(a2+a4+a6+…+a1000)=1000.答案:1000三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S2n=anSn-12.(1)求Sn的表达式;(2)设bn=Sn2n+1,求{bn}的前n项和Tn.解:(1)∵S2n=anSn-12,an=Sn-Sn-1(n≥2),∴S2n=(Sn-Sn-1)Sn-12,即2Sn-1Sn=Sn-1-Sn①由题意Sn-1·Sn≠0,故①式两边同除以Sn-1·Sn,得1Sn-1Sn-1=2.∴数列{1Sn}是首项为1S1=1a1=1,公差为2的等差数列,∴1Sn=1+2(n-1)=2n-1,∴Sn=12n-1.(2)∵bn=Sn2n+1=1(2n-1)(2n+1)=1212n-1-12n+1,∴Tn=b1+b2+…+bn5=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12.等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a25.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=n2+n+1an·an+1,求数列{bn}的前99项的和.解:(1)设数列{an}的公差为d(d0),∵a1,a3,a9成等比数列,∴a23=a1a9,∴(a1+2d)2=a1(a1+8d),∴d2=a1d,∵d0,∴a1=d,①∵S5=a25,∴5a1+5×42·d=(a1+4d)2②由①②得a1=35,d=35,∴an=35+(n-1)×35=35n(n∈N*).(2)bn=n2+n+135n·35(n+1)=259·n2+n+1n(n+1)=2591+1n-1n+1,∴b1+b2+b3+…+b99=259×1+1-12+1+12-13+1+13-14+…+1+199-1100=259×99+1-1100=275+2.75=277.75.13.(2011·沈阳市模拟)在数列{an}中,a1=1,2an+1=1+1n2·an(n∈N*).(1)证明:数列{ann2}是等比数列,并求数列{an}的通项公式;(2)令bn=an+1-12an,求数列{bn}的前n项和Sn.6解:(1)证明:由条件得an+1(n+1)2=12·ann2,又n=1时,ann2=1,故数列{ann2}构成首项为1,公比为12的等比数列.从而ann2=12n-1,即an=n22n-1.(2)由bn=(n+1)22n-n22n=2n+12n得Sn=32+522+…+2n+12n⇒12Sn=322+523+…+2n-12n+2n+12n+1,两式相减得12Sn=32+2122+123+…+12n-2n+12n+1,所以Sn=5-2n+52n.
本文标题:2012高考总复习《走向清华北大》精品30
链接地址:https://www.777doc.com/doc-3008360 .html