您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2013-2014学年高中数学课时作业14等比数列的前n项和新人教A版必修5
1课时作业14等比数列的前n项和时间:45分钟分值:100分一、选择题(每小题6分,共计36分)1.在等比数列{an}中,a2=9,a5=243,则数列{an}的前4项和为()A.81B.120C.168D.192解析:公比q3=a5a2=2439=27,即q=3,a1=a2q=3,S4=-341-3=120.答案:B2.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列,若a1=1,则S4=()A.7B.8C.15D.16解析:∵4a1,2a2,a3成等差数列,∴4a1+a3=4a2,即4a1+a1q2=4a1q,∴q2-4q+4=0,∴q=2,S4=15.答案:C3.数列{an}的前n项和为Sn=3n+a(a为常数),则数列{an}()A.是等比数列B.仅当a=-1时是等比数列C.不是等比数列D.仅当a=0时是等比数列解析:当n=1时,a1=S1=3+a;当n≥2时,an=Sn-Sn-1=(3n+a)-(3n-1+a)=3n-3n-1=2·3n-1.当n=1时,上式中2·3n-1=2·31-1=2,则a1=3+a=2,则a=-1,∴a=-1时,an=2·3n-1(n∈N*)是等比数列.答案:B4.数列{an}满足a1,a2-a1,a3-a2,…,an-an-1是首项为1,公比为2的等比数列,那么an=()A.2n-1B.2n-1-1C.2n+1D.4n-1解析:an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=-2n1-2=2n-1.答案:A25.等比数列{an}中,a1+a2+…+an=2n-1,则a21+a22+…+a2n=()A.(2n-1)2B.13(2n-1)C.4n-1D.13(4n-1)解析:当n=1时,a1=21-1=1,当n≥2时,an=Sn-Sn-1=2n-1-2n-1+1=2n-1.∴an=2n-1(n∈N*),∴数列{an}为等比数列,∴数列{a2n}是首项为1,公比为4的等比数列,∴a21+a22+…+a2n=1-4n1-4=13(4n-1).答案:D6.等比数列{an}中,公比q≠1,它的前n项和为M,数列{2an}的前n项和为N,则MN的值为()A.2a21qnB.12a1qn-1C.12a21qn-1D.2a21qn-1解析:{an}是公比为q的等比数列,则{2an}是首项为2a1,公比为1q的等比数列,由题意得M=a1-qn1-q,N=2a1[1-1qn]1-1q,解得MN=12a21qn-1.答案:C二、填空题(每小题8分,共计24分)7.若等比数列{an}的首项为1,公比为q,则它的前n项和Sn可以用n,q表示成:Sn=________.解析:当q=1时,Sn=na1=n,当q≠1时,Sn=-qn1-q,∴Sn=n,q=,1-qn1-q,q答案:n,q=1-qn1-q,q38.等比数列{an}的公比q0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=________.解析:由an+2+an+1=6an,得qn+1+qn=6qn-1,即q2+q-6=0,q0,解得q=2,又a2=1,所以a1=12,S4=12-241-2=152.答案:1529.112+314+518+…+151256=________.解析:S=112+314+518+…+151256=(1+3+5+…+15)+(12+14+18+…+1256)=+2+12-1281-12=64+(1-128)=64255256.答案:64255256三、解答题(共计40分)10.(10分)已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.解:(1)设等差数列{an}的公差为d,∵a3=-6,a6=0.∴a1+2d=-6,a1+5d=0,解得a1=-10,d=2.∴an=-10+(n-1)×2=2n-12.(2)设等比数列{bn}的公比为q.∵b2=a1+a2+a3=-24,b1=-8,∴-8q=-24,∴q=3.∴{bn}的前n项和为Sn=b1-qn1-q=--3n1-3=4(1-3n).11.(15分)已知等比数列{an}的各项都是正数,且a2=6,a3+a4=72.(1)求数列{an}的通项公式;(2)记数列{an}的前n项和为Sn,证明:Sn+2·SnS2n+1.解:(1)an=2×3n-1;(2)Sn=3n-1⇒Sn+2·Sn-S2n+1=-4×3n0⇒Sn+2·SnS2n+1.412.(15分)等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b0,且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记bn=n+14an(n∈N+),求数列{bn}的前n项和Tn.解:(1)因为对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b0,且b≠1,b,r均为常数)的图象上.所以得Sn=bn+r,当n=1时,a1=S1=b+r,当n≥2时,an=Sn-Sn-1=bn+r-(bn-1+r)=bn-bn-1=(b-1)bn-1,又因为{an}为等比数列,所以r=-1.(2)当b=2时,an=(b-1)bn-1=2n-1,bn=n+14an=n+14×2n-1=n+12n+1.则Tn=222+323+424+…+n+12n+1①①式两边同时乘以12得,12Tn=223+324+425+…+n2n+1+n+12n+2②相减得,12Tn=222+123+124+125+…+12n+1-n+12n+2=12+123-12n-11-12-n+12n+2=34-12n+1-n+12n+2.所以Tn=32-12n-n+12n+1=32-n+32n+1.
本文标题:2013-2014学年高中数学课时作业14等比数列的前n项和新人教A版必修5
链接地址:https://www.777doc.com/doc-3010503 .html