您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2013厦门中考数学试题(解析版)
第1页共8页(3)∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.点评:本题考查了分式求值,四点共圆,等腰三角形的性质和判定,求平均数等知识点的应用,主要考查学生的推理和计算能力.20.(6分)(2013•厦门)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面只有一个整数且互不相同).投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=+P(B)是否成立,并说明理由.考点:概率公式.3718684分析:让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,进而得出事件B的概率,进而得出答案.解答:解:不成立;理由:∵投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,∴符合要求的数有:2,3,4,6,8,9,10,12一共有8个,则P(A)=,∵事件B为“向上一面的数字是3的整数倍”,∴符合要求的数有:3,6,9,12一共有4个,则P(B)=,∵+=≠,∴P(A)≠+P(B).点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.第2页共8页21.(6分)(2013•厦门)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.考点:相似三角形的判定与性质;勾股定理的逆定理;梯形.专题:证明题.分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD.解答:证明:∵AD∥BC,∴△EAD∽△ECB,∴AE:CE=DE:BE,∵AE=4,CE=8,DE=3,∴BE=6,S梯形=(AD+BC)×=54,∴AD+BC=15,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,∴CF=AD,∴BF=AD+BC=15,在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2,∴BD⊥DF,∵AC∥DF,∴AC⊥BD.点评:本题考查了相似三角形的判定和性质、平行四边形的判定和性质、梯形的面积公式以及勾股定理的逆定理的运用,题目的综合性很强,难度中等.22.(6分)(2013•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单第3页共8页位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.考点:一次函数的应用分析:分别求出0≤x<3和3≤x≤12时的函数解析式,再求出y=5时的x的值,然后根据函数图象写出x的取值范围即可.解答:解:①0≤x<3时,设y=mx,则3m=15,解得m=5,所以,y=5x,②3≤x≤12时,设y=kx+b,∵函数图象经过点(3,15),(12,0),∴,解得,所以,y=﹣x+20,当y=5时,由5x=5得,x=1,由﹣x+20=5得,x=9,所以,当容器内的水量大于5升时,时间x的取值范围是1<x<9.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,以及已知函数值求自变量的方法.23.(6分)(2013•厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.第4页共8页考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质可得AB=AD,∠ABG=∠DAF=90°,再根据同角的余角相等求出∠1=∠2,然后利用“角边角”证明△ABG和△DAF全等,根据全等三角形对应边相等可AF=BG,AG=DF,全等三角形对应角相等可得∠AFD=∠BGA,然后求出EF=HG,再利用“边角边”证明△AEF和△BHG全等,根据全等三角形对应角相等可得∠1=∠3,从而得到∠2=∠3,最后根据等角的余角相等证明即可.解答:证明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,∵DE⊥AG,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG和△DAF中,,∴△ABG≌△DAF(ASA),∴AF=BG,AG=DF,∠AFD=∠BGA,∵AG=DE+HG,AG=DE+EF,∴EF=HG,在△AEF和△BHG中,,∴△AEF≌△BHG(SAS),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE.点评:本题考查了正方形的性质,全等三角形的判定与性质,等角或同角的余角相等的性质,本题难点在于两次证明三角形全等,用阿拉伯数字加弧线表示角可以更形象直观.24.(6分)(2013•厦门)已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC的面积S的取值范围.第5页共8页考点:反比例函数与一次函数的交点问题.分析:先确定直线y=﹣x+m+n与坐标轴的交点坐标,即C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,根据反比例函数的对称性得到点A与点B关于直线y=x对称,则B点坐标为(n,m),根据三角形面积公式得到S△OBC=(m+n)•n,然后mn=1,m≥2确定S的范围.解答:解:如图,C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,∴点A与点B关于直线y=x对称,则B点坐标为(n,m),∴S=S△OBC=(m+n)•n=mn+n2,∵点A(m,n)在双曲线上,∴mn=1,即n=∴S=+()2∵m≥2,∴0<≤,∴0<()2≤,∴<S≤.点评:本题考查了反比例函数图象与一次函数的交点问题:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.也考查了一次函数的性质.25.(6分)(2013•厦门)如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.第6页共8页考点:切线的判定;菱形的性质;弧长的计算.专题:证明题.分析:过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.设菱形OABC的边长为2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=()2,求得a=1,得到OF=,再根据弧长公式求出r=,则圆心O到直线BC的距离等于圆的半径r,从而判定直线BC与⊙O相切.解答:证明:如图,过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.设菱形OABC的边长为2a,则AM=OA=a.∵菱形OABC中,AB∥OC,∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°,∴AG=AB=a,BG=AG=a.在Rt△BMG中,∵∠BGM=90°,BG=a,GM=a+a=2a,BM=,∴BG2+GM2=BM2,即(a)2+(2a)2=()2,解得a=1,∴OF=BG=.∵的长==,∴r=,∴OF=r=,即圆心O到直线BC的距离等于圆的半径r,∴直线BC与⊙O相切.点评:本题考查了菱形的性质,勾股定理,弧长的计算公式,切线的判定,综合性较强,难度适中,利用菱形的性质及勾股定理求出a的值是解题的关键.第7页共8页26.(11分)(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.专题:阅读型;新定义.分析:(1)求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;(2)由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后根据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:(1)不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时,△=b2﹣4c,=4b2.x=,∴x1=b,x2=b.∴|x1|+|x2|=2b,第8页共8页∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.点评:本题考查了一元二次方程的解法的运用,根的判别式的运用根与系数的关系的运用及数学建模思想的运用,解答本体时根据条件特征建立模型是关键.
本文标题:2013厦门中考数学试题(解析版)
链接地址:https://www.777doc.com/doc-3013652 .html