您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 17光的干涉习题解答
1第十七章光的干涉一.选择题1.在真空中波长为的单色光,在折射率为n的均匀透明介质中从A沿某一路径传播到B,若A,B两点的相位差为3,则路径AB的长度为:(D)A.1.5B.1.5nC.3D.1.5/n解:32nd所以nd/5.1本题答案为D。2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将(A)A.变密B.变稀C.不变D.消失解:条纹间距dDx/,所以d增大,x变小。干涉条纹将变密。2本题答案为A。3.在空气中做双缝干涉实验,屏幕E上的P处是明条纹。若将缝S2盖住,并在S1、S2连线的垂直平分面上放一平面反射镜M,其它条件不变(如图),则此时(B)A.P处仍为明条纹B.P处为暗条纹C.P处位于明、暗条纹之间D.屏幕E上无干涉条纹解对于屏幕E上方的P点,从S1直接入射到屏幕E上和从出发S1经平面反射镜M反射后再入射到屏幕上的光相位差在均比原来增,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。故本题答案为B。4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是(B)A.亮斑B.暗斑C.可能是亮斑,也可能是选择题3图3暗斑D.无法确定解:反射光和透射光的等倾干涉条纹互补。本题答案为B。5.一束波长为的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(B)A./4B./(4n)C./2D./(2n)6.在折射率为n=1.60的玻璃表面上涂以折射率n=1.38的MgF2透明薄膜,可以减少光的反射。当波长为500.0nm的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为(C)A.5.0nmB.30.0nmC.90.6nmD.250.0nm解:增透膜6.904/minnenm本题答案为C。7.用波长为的单色光垂直照射到空气劈尖上,观察等厚干涉条纹。当劈尖角增大时,观察到的干涉条纹的间4距将(B)A.增大B.减小C.不变D.无法确定解:减小。增大,故lnl,sin2本题答案为B。8.在牛顿环装置中,将平凸透镜慢慢地向上平移,由反射光形成的牛顿环将(c)A.向外扩张,环心呈明暗交替变化B.向外扩张,条纹间隔变大C.向中心收缩,环心呈明暗交替变化D.无向中心收缩,条纹间隔变小解:本题答案为C。9.用波长为的单色平行光垂直照射牛顿环装置,观察从空气膜上下两表面反射的光形成的牛顿环。第四级暗纹对应的空气膜厚度为(B)A.4B.2C.4.5D.2.25解:暗条纹条件:,2/)12(2/2knek=4,n=1,所以2e。5本题答案为B。10.在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(D)A./2B./(2n)C./nD./(2(n1))解:)1(2/,)1(2nddn故本题答案为D。二.填空题1.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距,若使单色光波长减小,则干涉条纹间距。解:dDx,所以d增大,x减小;减小,x也减小。2.如图,在双缝干涉中若把一厚度为e,折射率为n的薄云母片,覆盖在S1缝上,中央明纹将向移动。覆盖云母片后,两束相干光enS1S2So屏填空题2图6到达原中央明纹o处的光程差为。解:因为n1,光从S1、S2传播到屏幕上相遇时光程差为零的点在o点上方,所以中央明纹将向上移动。光程差为en)1(。3.在双缝干涉实验中,中央明条纹的光强度为I0,若遮住一条缝,则原中央明条纹处的光强度变为。解:中央明条纹的光强度为I02)2(A,遮住一条缝,则原中央明条纹处的光强度I2A,I=40I。4.如图所示,在双缝干涉实验中,SS1=SS2,用波长为的光照射双缝S1和S2,通过空气后在屏幕E上形成干涉条纹,已知P点处为第三级明条纹,则S1和S2到P点的光程差为;若将整个装置放于某种透明液体中,P点为第四级明条纹,则该液体的折射率n=。解:kk=3所以3。在透明液体中'kn,4'k,所以n43,34nn1n2n3e填空题5图填空题4图SPES1S275.如图所示,当单色光垂直入射薄膜时,经上下两表面反射的两束光发生干涉。当n1n2n3时,其光程差为;当n1=n3n2时,其光程差为。解:3221,nnnn所以上、下表面的反射光都有半波损失,附加光程差0'故光程差en22。231nnn时,上表面有半波损失,下表面无半波损失,附加光程差2',故光程差222en。6.用波长为的单色光垂直照射如图所示的劈尖膜(n1n2n3),观察反射光干涉,劈尖顶角处为条纹,从劈尖膜尖顶算起,第2条明条纹中心所对应的厚度为。解:n1n2n3所以上、下表面的反射光都没有半波损失,故劈尖顶角处光程差为零,为明条纹;第2条明条纹即第一级明条纹1,22kken,所以22ne。7.单色光垂直照射在劈尖上,产生等厚干涉条纹,为了使条纹的间距变小,可采用的方法是:使劈尖角,或改用波长较的光源。n1n2n3填空题6图8解:sin2l,要使l变小,使劈尖角增大,或用波长较小的光源。8.某一牛顿环装置都是用折射率为1.52的玻璃制成的,若把它从空气中搬入水中,用同一单色光做实验,则干涉条纹的间距,其中心是斑。解:kRrnen2222水,nRkr)(21,n变大,干涉条纹间距变密。其中心是暗斑。9.用迈克耳孙干涉仪测反射镜的位移,若入射光波波长=628.9nm,当移动活动反射镜时,干涉条纹移动了2048条,反射镜移动的距离为。解:2Nd=0.644mm。三.计算题1.在双缝干涉实验中,若缝间距为所用光波波长的1000倍,观察屏与双缝相距50cm,求相邻明纹的间距。解:由双缝干涉公式x=kD/d得:x=D/d=0.05cm2.在图示的双缝干涉实验中,若用折射率为n1=1.4的9薄玻璃片覆盖缝S1,用同样厚度但折射率为n2=1.7的玻璃片覆盖缝S2,将使屏上原中央明条纹所在处O变为第五级明条纹,设单色光波长=480.0nm,求玻璃片厚度d(可认为光线垂直穿过玻璃片)。解:双缝未覆盖玻璃片之前,两束光到达中央明条纹所在处o点的光程差r2r1=0双缝未覆盖玻璃片之后,o点变为第五级明纹,因此两束光到达o点后的光程差[n2d+(r2d)][n1d+(r1d)]=5因此(n2n1)d=5d=5/(n2n1)=5480109/(1.71.4)=8106m3.在杨氏双缝实验中,两缝之间的距离d=0.5mm,缝到屏的距离为D=25cm,若先后用波长为400nm和600nm两种单色光入射,求:(1)两种单色光产生的干涉条纹间距各是多少?(2)两种单色光的干涉条纹第一次重叠处距屏中心距离为多少?各是第几级条纹?OdS1S2n1n2r1r2计算题2图10解:如图所示,屏上p点处,从两缝射出的光程差为=xd/D明纹条件=k屏上明纹位置x=Dk/d(1)两明条纹的间距x=D/dx1=D1/d=0.2mmx2=D2/d=0.3mm(2)在两种单色光的干涉条纹重叠处,有x1=x2即k11=k22k1/k2=2/1=3/2第一次重叠k1=3,k2=2x1=x2=0.6mm故两种单色光的干涉条纹第一次重叠处距屏中心距离为0.6mm,波长为400nm的是第3级条纹,波长为600nm的是第2级条纹。4.如图,用白光垂直照射厚度e=400nm的薄膜,若薄膜折射率n2=1.4,且n1n2n3,则反射光中哪些波长的可见光得到加强?pDdx11解:由于n1n2n3从上下表面反射的光均无半波损失。反射光得到加强的条件是2n2e=k=2.8400/kk=1时,=1120nmk=2时,=560nmk=3时,=373.3nm可见光范围400nm~760nm,所以反射光中可见光得到加强的是560nm。5.一片玻璃(n=1.5)表面附有一层油膜(n=1.32),今用一波长连续可调的单色光束垂直照射油面。当波长为485nm时,反射光干涉相消。当波长增为679nm时,反射光再次干涉相消。求油膜的厚度。解:由于在油膜上,下表面反射时都有相位跃变,所以反射光干涉相消的条件是2ne=(2k+1)/2。于是有n3n1n2e计算题4图122ne=(2k+1)1/2=(2k1)2/2由此解出)(21212k,进一步得到油膜的厚度nm643485679321248567921212)(.)(ne6.在折射率n=1.52的镜头表面涂有一层折射率n2=1.38的MgF2增透膜。如果此膜适用于波长=550nm的光,膜的最小厚度应是多少?解:透射光干涉加强的条件是2ne+/2=k,k=1,2,…m10)6.993.199(38.1210550)21(2)21(99kknke故最薄需要e=99.6nm。7.用波长为1的单色光照射空气劈尖,从反射光干涉条纹中观察到劈尖装置的A点处为暗条纹,若连续改变入射光波长,直到波长变为2(21)时,A点再次变为暗条纹,求A点处的空气薄膜厚度。解:设A点处空气薄膜厚度为e,则有:2e+1/2=(2k+1)/2即:2e=k1。因此改变波长后有:2e=(k1)2。所以:13k1=k22k=2/(21)e=k1/2=12/2(21)8.如图,利用空气劈尖测细丝直径,观察到30条条纹,30条明纹间的距离为4.295mm,已知单色光的波长=589.3nm,L=28.88×103m,求细丝直径d。解:相邻条纹间的厚度差为/2,30条明条纹厚度差为(301)/2=8.54106m,劈尖角8.54106/4.295103=1.989103radd=L=5.74105m9.用单色光观察牛顿环,测得某一明环直径为3.00mm,它外面第5个明环的直径为4.60mm,平凸透镜的曲率半径为1.03m,求此单色光的波长。解:由Rkrk2122和Rkrk21)5(225可解得nm590m1090.503.120)1000.3()1060.4(20572323225225RddRrrkkkk10.在牛顿环实验中,当透镜和玻璃之间充以某种液Ld计算题8图14体时,第十个亮环的直径由1.40102m变为1.27102m。试求这种液体的折射率。解:牛顿环亮环的直径为:.....2,1,2)12(2kRkdk设这种液体的折射率为n,则光波的波长变为:n/'因此22.1)1027.11040.1(2222'10210'ddn。11.折射率为n,厚度为d的薄玻璃片放在迈克耳孙干涉仪的一臂上,问两光路光程差的改变量是多少?解:由于光来回通过玻片两次,所以光程差的改变量为2(n1)d。
本文标题:17光的干涉习题解答
链接地址:https://www.777doc.com/doc-3023133 .html