您好,欢迎访问三七文档
第一章流体流动FluidFlow基本概述①研究流体流动问题的重要性流体流动与输送是最普遍的化工单元操作之一;研究流体流动问题也是研究其它化工单元操作的重要基础。研究与流体输送有关的基本原理及规律应用,为强化设备提供适宜条件。流体:化工过程处理加工的对象,包括气体和液体。研究方法:流体分子微团和连续介质。②流体的连续性假设流体质点与连续性质点:保持流体宏观力学性质的最小流体单元,是由大量分子构成的集团(又称微团);其几何尺寸大于分子自由程,而远远小于管路或容器的几何尺寸。连续性:流体是由无数的彼此相连的流体质点组成,是一种连续性介质。工程意义:利用连续函数的数学工具,从宏观研究流体。③流体的特征特征:流体分子间距离较大,当受到外部剪切力作用时,易变形产生流动可压缩流体:通常为气体,密度变化较明显不可压缩流体:液体(外压很大情况下除外),压力改变对密度影响很小的流体分类主要内容一、流体静力学二、管内流体流动的基本方程式▲三、管内流体流动现象四、流体在管内流动时摩擦阻力损失▲五、管路计算六、流量的测定本章学习目的与要求:掌握流体静力学基本方程、连续性方程、柏努利方程的内容及应用,并在此基础上解决流体输送的有关计算问题。了解流体流动的基本原理及规律。一、流体压力(压强)(Pressure)(1)压力的定义和单位流体的压力是流体垂直作用于单位面积上的力,严格地说应该称压强。流体静力学第一节APp压力(小写)力(大写)面积PamN][2p注意:常见的压力单位及它们之间的换算关系1atm=101300Pa=101.3kPa=0.1013MPa=10330kgf/m2=1.033kgf/cm2=10.33mH2O=760mmHg1at(工程大气压)=1kgf/cm2=9.807×104N/m2(Pa)=10mH2O=735.6mmHg(2)压力的表示方法绝对压力以绝对真空为基准测得的压力。表压或真空度以大气压为基准测得的压力。表压=绝对压力-大气压力真空度=大气压力-绝对压力绝对零压大气压测定压力表压真空度工程上用压力表测的压力是指表压测定压力二、密度ρVmkg/m3(SI制)),(tpf不可压缩流体:压力改变时其密度随压力改变很小的流体。可压缩流体:压力改变时其密度随压力改变有显著变化的流体。注:若在输送过程中压力改变不大,气体也可按不可压缩流体来处理。二、密度ρ理想气体的密度:标准状态(1atm,0℃)下每mol气体的体积为22.4m3,则其密度为RTpMVnMVm或注:以上3式只适用于理想气体。气体混合物:nn2211体积分率,理想气体混合物中其值与摩尔分率y相等比体积:单位质量物体的体积1m3/kg混合流体密度计算三、流体静力学平衡方程0)(2112zzgAApAp)(2112zzgppgzpgzp2211ghppa2静力学基本方程p0p2p1z1z2G讨论:在静止的、连续的同种液体内,处于同一水平面上各点的压力情况。(等压面)液面上方压力变化时,液体内部各点的压力的变化情况。(压力的传递性)等式反映出什么问题?、zggzpgzp2211请找出下图等压面在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但总和恒为常量。因此,静力学基本方程也反映了静止流体内部能量守恒与转换的关系。gzpgzp2211说明的问题四、流体静力学基本方程在工程中的应用流体压强的测量—液柱压差计液位测量—液面测量装置液封高度计算—安全液封装置讨论:①U形管压差计可测系统内两点的压力差,当将U形管一端与被测点连接、另一端与大气相通时,也可测得流体的表压或真空度。②指示液的选取:指示液与被测流体不互溶,不发生化学反应;其密度要大于被测流体密度。也可选用比被测液体密度小的流体(常用气体)作指示剂,采用倒U形管压差计进行测量。倒U形管压差计p1–p2=(ρ–ρ0)gR被测压差值很小时,可倾斜U形管压差计。R/与R的关系为:R/=R/sinα倾斜管U形压差计应用举例:教材P15例1-4静力学方程式应用说明:正确选择等压面,等压面必须在连续、相对静止、同种流体的统一水平面上。注意基准面的选择。一般为较低水平面。单位必须一致。平衡室2所装的液体与容器中相同,液面高度维持在容器中液面允许到达的最高位置。压差计读数R即可指示出容器内的液面高度,关系为:图1-4利用U形压差计测量近距离液位装置。Rh0液面测量装置安全液封装置当设备内压力超过规定值时,气体则从水封管排出,以确保设备操作的安全。防止气柜内气体泄漏。gph小结工程流体压力的测定:表压和真空度流体静力学基本方程式:U形管压差计的应用ghppa2管内流体流动的基本方程式基本概念稳定流动(Steadyflow):流体在管道中流动时,任一点的流动参数(如:u,P,ρ)不随时间而变化,只随位置变化而变化。又称定态流动。不稳定流动(Unsteadyflow):与上相反。又称非定态流动。第二节稳定流动不稳定流动一、流量与流速流量:分为体积流量(qv,m3/s)和质量流量(qm,Kg/s)。其中:qm=ρqv。通常,流量大小由生产任务决定。平均流速u:单位时间内单位截面面积流过的流体体积,简称流速(u,m/s),u=qv/A。质量流速ω(Kg/m2•s):ω=ρu。流量、平均流速和质量流速间的关系二、连续性方程(ContinuityEquation)取截面1-1至2-2之间的管段作为控制体(欧拉法,截面固定)111222duAuAVt1、质量守恒方程达芬奇(1452-1519)达芬奇在1500年左右,提出了定常流动的体积流量守恒原理,他说:“沿河流任何一部分,在相同的时间里,应通过相同流量的水,不管河流的宽度、深度、坡度、粗糙度和曲折度如何”,他还发现对“一深度均匀的河流,窄的地方较宽的地方水流速度要快”。1628年被重新发现,命名为达芬奇-卡斯帕里原理。1755年L.欧拉(1707-1783)得到连续性微分方程。定态流动时对不可压缩流体对圆形截面管道d0Vt222111AuAu1=2=常数1122uAuA24dA22212112ddAAuu质量守恒方程11221,mq2,mq。常数一截面,有:对管路中任意即如右图:,)(,2221112221112,1,CuAAuAuqAuAuqqmmm稳定流动系统:输入=输出。对圆管:。若,流体不可压缩,221122222112211,44dduududuCuAAuAuVs2、连续性方程3、连续性方程应用例:如图1-10所示,管路由一段φ89×4mm的管1、一段φ108×4mm的管2和两段φ57×3.5mm的分支管3a及3b连接而成。若水以9×10-3m3/s的体积流量流动,且在两段分支管内的流量相等,试求水在各段管内的速度。解题要点:小结连续性方程满足条件:稳态、连续表达式:特殊表达式:连续性方程的应用:自学P20例1-8z1u1u21z2we1qe22三、稳定流动的机械能衡算——柏努利方程1、流体总能量衡算式单位质量流体总能量衡算式机械能:位能、动能、压力能、功。特点:在流体流动过程中可以相互转变,也可以变成热或流体的内能,还可以用于流体的输送;内能、热:在流动系统内不能直接转变为用于输送流体的机械能。输入输出2222221121112121pugzUwqpugzUee2、实际不可压缩流体的机械能衡算假设:①流体是不可压缩的,ρ=常数;②流动系统中无热交换器,qe=0;③流体温度不变,U1=U2。流动流体存在内摩擦力,故机械能部分转化为热能。上式为实际不可压缩流体稳定流动的机械能衡算式。对于可压缩流体由于密度不为常数,所以不可用。位头(位压头)压力头(静压头)速度头(动压头)泵的扬程压头损失总压头衡算基准不同时的能量衡算式流体输送机械对每牛顿流体所做的功3、理想流体的机械能衡算——柏努利方程222212112121pugzpugz上式称为柏努利(bernoulli)方程(理想流体)若流体为理想流体即不可压缩无黏性,流动过程中没有阻力的流体,Σhf=0,且又无外功加入,we=0,则(1)当流体处于静止状态又无外功时,即u1=u2、we=0、0fw2211pgzpgz静力学基本方程柏努利方程式的讨论(2)柏努利方程式的物理意义流体在流动中,若没有外功加入又没有能量消耗,如没有外功加入的理想流体则任一截面上的机械能总量E为常数,即常数pugzE221理想流体流动中各种形式的机械能可以相互转化。有一用水吸收混合气中氨的常压逆流吸收塔,水由水池用离心泵送至塔顶经喷头喷出,泵入口管为Φ108×4mm无缝钢管,管中流量为40m3/h,出口管为Φ89×3.5mm无缝钢管。池内水深为2m,池底至塔顶喷头入口处的垂直距离为20m。管路的总阻力损失为40J/kg,喷头入口处的压强为120kPa(表)。设泵的效率为65%。试求泵所需的功率,kw。4、柏努利方程的应用柏努利方程的应用注意:在用柏努利方程解题时,一般应先根据题意画出流动系统的示意图,标明流体的流动方向,定出上、下游截面,明确流动系统的衡算范围。解题时需注意以下几个问题:截面的选取:与流体的流动方向相垂直;两截面间流体应是定态连续流动;截面宜选在已知量多且包含待求量、计算方便处。基准水平面的选取:位能基准面必须与地面平行。为计算方便,宜于选取两截面中位置较低的截面为基准水平面。计算中要注意各物理量的单位保持一致。小结gz、p/ρ、1/2u2、z、p/gρ、u21/2g所表示的物理意义柏努利方程几种表达式柏努利方程应用条件柏努利方程应用步骤作业一、基本概念流体连续性假设稳态流动流速等压面二、问答题1、流体压力形式有几种?具体是什么?图示它们之间的关系。2、总结理想流体与实际不可压缩流体的柏努利方程的两种表达式,并注明各项表示的物理意义,方程式应用时应注意哪些问题?三、计算题教材P551-21-61-8;P57-601-161-20管内流体流动现象第三节一、牛顿粘性定律与流体的粘度1、牛顿粘性定律流动着的流体层之间存在内摩擦力导致流体层之间存在速度差。Au=0Bu=0BuAu=0xy图1-14平板间流体速度变化u牛顿粘性定律动力粘度简称粘度,Pa•s速度梯度牛顿粘性定律适用于牛顿型流体(Newtonianfluids);不符合牛顿粘性定律的流体称为非牛顿型流体(Non-newtonianfluids)。定义式:物理意义:速度梯度等于1时,单位面积上所产生的内摩擦力,衡量流体粘性大小的物理量。影响因素:温度、压力。单位:SI制Pa•s;CGS制cp(厘泊)P(泊)运动粘度:ν=μ/ρ单位:m2/s2、黏度二、流体流动型态1、雷诺实验水水平玻璃管水箱细管水溢流堰小瓶(密度与水相近)阀雷诺实验图(a)层流图(b)湍流图1-16雷诺实验装置2、流型的判断雷诺准数层流(LaminarFlow):Re≤2000;湍流(TurbulentFlow):Re≥4000;2000Re4000时,有时出现层流,有时出现湍流,或者是二者交替出现,为外界条件决定,称为过渡区;流型只有两种:层流和湍流。质量流速单位时间通过单位截面上的动量单位面积上流体粘性力的大小(1)准数说明准数:凡是几个有内在联系的物理量按无因次条件组合起来的数群,称为准数或无因次数群。(dimensionlessgroup)雷诺数的物理意义(2)滞流与湍流的区别A、流体内部质点运动的方式不同滞流时质点沿管轴作平行运动,质点不碰撞,不混合。湍流时质点作不规则的杂乱运动,产生大大小上的旋涡,质点间相互碰撞,混合(空间、时间)。产生的附加阻力
本文标题:1流体流动.
链接地址:https://www.777doc.com/doc-3027467 .html