您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2012年中考三角形四边形压轴题精选(四)及解析
2012年各地中考数学汇编三角形四边形精选(31~40)【31.2012南通】26.(本小题满分10分)如图,菱形ABCD中,∠B=60º,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60º,求证:BE=DF;(2)如图2,若∠EAF=60º,求证:△AEF是等边三角形.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定.【专题】证明题.【分析】(1)首先连接AC,由菱形ABCD中,∠B=60°,根据菱形的性质,易得△ABC是等边三角形,又由三线合一,可证得AE⊥BC,继而求得∠FEC=∠CFE,即可得EC=CF,继而证得BE=DF;(2)首先连接AC,可得△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形.【解答】证明:(1)连接AC,∵菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°-∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°,∴∠CFE=180°-∠FEC-∠C=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)连接AC,∵四边形ABCD是菱形,∠B=60°∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△AFC中,∠B=∠ACF∠AEB=∠AFCAB=ACBECFAD图1BECFAD图2∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.【点评】此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.【32.2012南通】27.(本小题满分12分)如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a=52,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.【考点】相似三角形的判定与性质;等腰三角形的性质;勾股定理;平行四边形的性质.【专题】几何综合题.【分析】(1)由△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,根据等腰三角形三线合一的性质,即可求得BD与CD的长,又由a=2,△BPQ∽△BDA,利用相似三角形的对应边成比例,即可求得t的值;(2)①首先过点P作PE⊥BC于E,由四边形PQCM为平行四边形,易证得PB=PQ,又由平行线分线段成比例定理,即可得方程52t10=12(6-t)6,解此方程即可求得答案;②首先假设存在点P在∠ACB的平分线上,由四边形PQCM为平行四边形,可得四边形PQCM是菱形,即可得PB=CQ,PM:BC=AP:PB,及可得方程组,解此方程组求得t值为负,故可得不存在.【解答】解:(1)△ABC中,AB=AC=10cm,BC=12cm,D是BC的中点,∴BD=CD=12BC=6cm,∵a=2,∴BP=2tcm,DQ=tcm,∴BQ=BD-QD=6-t(cm),∵△BPQ∽△BDA,∴BPBD=BQAB,即2t6=6-t10,解得:t=1813;(2)①过点P作PE⊥BC于E,∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ,∴BE=12BQ=12(6-t)cm,∵a=52,∴PB=52tcm,∵AD⊥BC,∴PE∥AD,∴PB:AB=BE:BD,即52t10=12(6-t)6,解得:t=32,∴PQ=PB=52t=154(cm);②不存在.理由如下:∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ.若点P在∠ACB的平分线上,则∠PCQ=∠PCM,∵PM∥CQ,∴∠PCQ=∠CPM,∴∠CPM=∠PCM,∴PM=CM,∴四边形PQCM是菱形,∴PQ=CQ,∴PB=CQ,∵PB=atcm,CQ=BD+QD=6+t(cm),∴PM=CQ=6+t(cm),AP=AB-PB=10-at(cm),即at=6+t①,∵PM∥CQ,∴PM:BC=AP:AB,∴6+t12=10-at10,化简得:6at+5t=30②,把①代入②得,t=-611,∴不存在实数a,使得点P在∠ACB的平分线上.【点评】此题考查了相似三角形的判定与性质、平行四边形的性质、菱形的判定与性质以及等腰三角形的性质等知识.此题难度较大,注意数形结合思想与方程思想的应用.【33.2012常德】25.已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运到,连结DP,作CN⊥DP于点M,且交直线AB于点N,连结OP,ON。(当P在线段BC上时,如图9:当P在BC的延长线上时,如图10)(1)请从图9,图10中任选一图证明下面结论:①BN=CP:②OP=ON,且OP⊥ON(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系。知识点考察:①正方形的性质,②三角形外角和定理,③全等三角形的判定,④两线垂直的判定,⑤多边形的面积的分解,⑥函数解析式的确定,⑦分段函数,⑧点到直线的距离。能力考察:①观察能力,②逻辑思维与推理能力,③书写表达能力,④综合运用知识的能力,⑤分类讨论的能力。分析:对于图9,证明线段相等,一般情况下找全等。根据BN,CP的分布情况,可以观察△CNB和△DPC,然后证明两三角形全等。也可以观察△CAN和△DBP,证明AN=BP,从而有BN=CP。至于以O、P、B、N为顶点的四边形的面积,则要把四边形分解为两个三角形去解决问题。对于图10来说图型要稍微复杂一点,先证△PDB≌△NCA,得DP=CN再证△PDO≌△NCO,则有OP=ON,证明:对于图9,(1)①∵ABCD为正方形,∴∠DCP=90º,△DCP为Rt△,同理:△CBN为Rt△,而CM⊥DP∴∠PCM=∠CDP在Rt△DCP与Rt△CBN中:∠DCP=∠CBN=90º∠CDP=∠PCNCD=BC∴Rt△DCP≌Rt△CBN∴CP=BN②而∠OCP=∠OBN=45ºOC=OB∴△COP≌△BON∴ON=OP∠COP=∠BON又∵OC⊥OB∴∠COB=∠COP+∠POB=90º=∠BON+∠POB=90º∴ON⊥OP(2)S四边形OPBN=S△ONB+S△OPB=2212)-421xx(=4(0x≤4)对于图10,(1)①∵ABCD为正方形,AC,BD为对角线,∴∠DCP=90º,而CM⊥DP,∴∠PCM=∠PDC∴∠PDB=∠ACN又∵∠DPB=∠ANCBD=AC∴△PDB≌△NCA∴PB=ANDP=CN∴CP=BN②而∠PDB=∠ACN且OD=OC∴△PDO≌△NCO∴OP=ON,∠DOP=∠CON∵∠DOC=90º,∴∠PON=∠NOC+POC=∠DOP+∠POC=∠DOC=90º,∴OP⊥ON。(2)S四边形OBNP=S△OBP+S△PBN=xxxxx-21)4-(212212(x≥4)点评:这是一个动态几何问题,综合性程度高,图形也比较复杂,但我们只要仔细观察、冷静思考、多读几遍题目就会找到解决问题的突破口,千万不能轻易放弃。【34.2012珠海】17.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.解:证明:(1)∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠A′DE=90°,根据旋转的方法可得:∠EA′D=45°,,∴∠A′ED=45°,∴A′D=DE,在△AA′D和△CED中,∴△AA′D≌△CED(SAS);(2)∵AC=A′C,∴点C在AA′的垂直平分线上,∵AC是正方形ABCD的对角线,∴∠CAE=45°,∵AC=A′C,CD=CB′,∴AB′=A′D,在△AEB′和△A′ED中,∴△AEB′≌△A′ED,∴AE=A′E,∴点E也在AA′的垂直平分线上,∴直线CE是线段AA′的垂直平分线.【35.2012长沙】24.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.解答:(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBE,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF,∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG,∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG=2,∴BE=DF=2DG=4.【36.2012六盘水】22.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质。专题:证明题。分析:(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);(2)∵△ABE≌△FCE,∴AB=CF,又AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC
本文标题:2012年中考三角形四边形压轴题精选(四)及解析
链接地址:https://www.777doc.com/doc-3033305 .html