您好,欢迎访问三七文档
相似三角形1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A.B.C.D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。求C、D两点的坐标。11.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。求证:12.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。求证:13.在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;(2)当时,EF=;(3)当时,EF=.当时,参照上述研究结论,请你猜想用a、b和k表示EF的一般结论,并给出证明.14.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.15.证明:(1)重心定理:三角形顶点到重心的距离等于该顶点对边上中线长的.(注:重心是三角形三条中线的交点).(2)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例.16.如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点E、F.求证:.17.已知:如图,梯形ABCD中,AB//DC,对角线AC、BD交于O,过O作EF//AB分别交AD、BC于E、F。求证:.18.如图,在△ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在△ABC上。求证:.19.已知,在△ABC中作内接菱形CDEF,设菱形的边长为a.求证:.20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证:(2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.22.如图,已知等腰三角形ABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。求证:DE2=EG•EH23.已知如图,P为平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H.求证:24.已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角.求证:PD2=AD·DH。25.已知如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。求证:26如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:(1)△AED∽△CBM;(2)27.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:.(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.28.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:.FECBAB'C'29.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H。求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH30.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.31.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.32.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F。求证:33.如图,Rt△ABC是由Rt△ABC绕点A顺时针旋转得到的,连结CC交斜边于点E,CC的延长线交BB于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=,∠CAC=,试探索、满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.34.在直角梯形OABC中,CB∥OA,∠COA=90º,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐图15-2ADOBC21MN图15-1ADBMN12图15-3ADOBC21MNO标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.35.在图15-1至图15-3中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图15-1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO=OB.求证:AC=BD,AC⊥BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求ACBD的值.36.如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.(1)求证CG=BH;(2)FC2=BF·GF;(3)22ABFC=GBGF.37.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程ABDEFCOMNxyBACDHEFG中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐▲.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.38.已知△ABC中,AB=25,AC=45,BC=6(1)如图1点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,①请你在所给的网格中画出格点△A1B1C1,使得△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出在所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中的一个(不需证明)39.已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是、面积是、高BE的长是;(2)探究下列问题:①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值。②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.GxyABCDOE(图1)PQ40.△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.41.如图,已知正方形ABCD中,BE平分DBC且交CD边与点E,将BCE绕点C顺时针旋转到DCF的位置,并延长BE交DF于点G(1)求证:DEGBDG∽;(2)若EG·BG=4,求BE的42.如图,在Rt△ABC中,∠AB
本文标题:相似三角形难题集锦
链接地址:https://www.777doc.com/doc-3041331 .html