您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 2011年11月月考数学试卷
2011年九年级11月月考数学试卷第1页共19页2011年十校九年级11月月考数学试卷一、选择题(共10小题)1、下列运算正确的是()A、B、C、D、2、关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A、0B、8C、4±2D、0或83、三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A、11B、13C、11或13D、不能确定4、关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A、1B、﹣1C、1或﹣1D、25、经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A、B、C、D、6、在直角坐标平面内的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走a个单位长度.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[2,60°]后位置的坐标为()A、B、C、D、7、如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm8、如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现()A、3次B、5次C、6次D、7次2011年九年级11月月考数学试卷第2页共19页9、若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A、x1<x2<a<bB、x1<a<x2<bC、x1<a<b<x2D、a<x1<b<x210、已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A、①⑤B、①②⑤C、②⑤D、①③④二、填空题(共5小题)11、设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a=_________.12、如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.13、如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为_________.14、如图,已知点A的坐标为(,3),AB丄x轴,垂足为B,连接OA,反比例函数y=(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是_________(填”相离”,“相切”或“相交“).15、已知二次函数y=(x﹣2a)2+(a﹣1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=﹣1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=_________.2011年九年级11月月考数学试卷第3页共19页三、解答题(共9小题)16、先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.17、已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.18、光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.19、如图,在边长为1的小正方形组成的网格,直角梯形ABEF的顶点均在格点上,请按要求完成下列各题:(1)请在图中拼上一个直角梯形,使它与梯形ABEF构成一个等腰梯形ABCD;(2)将等腰梯形ABCD绕点C按顺时针方向旋转90°,画出相应的图形A1B1CD1;(3)求点A旋转到点A1时,点A所经过的路线长.(结果保留π)20、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.21、在以O为原点的平面直角坐标系中2,抛物线y=ax2+bx+c不经过第一象限,对称轴在y轴的左侧(1)直接写出a、b、c的取值范围(2)若该抛物线过点c(0、-3)与x轴交于A(x1,0)B(X2,0)两点,且x1+x2=-2,其顶点到原点O的距离为,求此抛物线的解析式22、2010年上半年,某种农产品受不良炒作的影响,价格一路上扬.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;(2)2010年的12个月中.这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月2011年九年级11月月考数学试卷第4页共19页份有哪些?23、己知:正方形ABCD.(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.24、如图,y关于x的二次函数y=﹣(x+m)(x﹣3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(﹣3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.2011年十校九年级11月月考数学试卷2011年九年级11月月考数学试卷第5页共19页答案与评分标准一、选择题(共10小题)1、(2011•泰安)下列运算正确的是()A、B、C、D、解答:解:A.∵=5,故此选项错误;B.∵4﹣=4﹣3=,故此选项错误;C.÷==3,故此选项错误;D.∵•==6,故此选项正确.故选:D.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2、(2011•威海)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A、0B、8C、4±2D、0或8解答:解:∵一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=0,即(m﹣2)2﹣4×1×(m+1)=0,整理,得m2﹣8m=0,解得m1=0,m2=8.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3、(2011•黔南州)三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A、11B、13C、11或13D、不能确定解答:解:(x﹣2)(x﹣4)=0x﹣2=0或x﹣4=0∴x1=2,x2=4.因为三角形两边的长分别为3和6,所以第三边的长为4,周长=3+6+4=13.故选B.点评:本题考查的是用因式分解法解一元二次方程,先求出方程的根,再根据三角形三边的关系确定第三边的长,然后求出三角形的周长.4、(2011•荆州)关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()2011年九年级11月月考数学试卷第6页共19页A、1B、﹣1C、1或﹣1D、2解答:解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.点评:此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键.5、(2011•呼和浩特)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A、B、C、D、解答:解:列表得:∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是.故选C.点评:本题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.6、(2011•广安)在直角坐标平面内的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走a个单位长度.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[2,60°]后位置的坐标为()A、B、C、D、解答:解:由已知得到:OA=2,∠COA=60°,过A作AB⊥X轴于B,∴∠BOA=90°﹣60°=30°,∴AB=1,由勾股定理得:OB=,∴A的坐标是(﹣,﹣1).2011年九年级11月月考数学试卷第7页共19页故选C.点评:本题主要考查对勾股定理,含30度直角三角形的性质,坐标与图形变化﹣旋转等知识点的理解和掌握,能正确画出图形是解此题的关键.7、(2011•青岛)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm解答:解:∵半径为1cm的圆形,∴底面圆的半径为:1,周长为2π,扇形弧长为:2π=,∴R=4,即母线为4,∴圆锥的高为:=.故选:C.点评:此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.8、(2011•宁波)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB于P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现()A、3次B、5次C、6次D、7次解答:解:∵⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O22011年九年级11月月考数学试卷第8页共19页垂直AB于P点,设
本文标题:2011年11月月考数学试卷
链接地址:https://www.777doc.com/doc-3048288 .html