您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2011年中考数学压轴题
一、2011浙江义乌压轴题二、2011浙江绍兴压轴题23、数学课上,李老师出示了如下框中的题目.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AEDB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AEDB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).24、抛物线y=-(x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.(1)如图1.求点A的坐标及线段OC的长;(2)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.图1图2图3xyMNxOCEABFAByCO…xOyACB三、2011浙江金华压轴题23、在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线2yaxbxc(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.24、如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.第24题图OBDECFxyA四、2011浙江衢州压轴题23、△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由。(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为1s;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2s(如图2),则_______s2;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为3s,继续操作下去……,则第10次剪取时,__________s10;(3)求第10次剪取后,余下的所有小三角形的面积之和。24、已知两直线1l,2l分别经过点A(1,0),点B)03(,,并且当两直线同时相交于y正半轴的点C时,恰好有21ll,经过点A、B、C的抛物线的对称轴与直线2l交于点K,如图所示。(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线1l,抛物线,直线2l和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由。(3)当直线2l绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。ABCDEFABCDEABCDKEFO2l1lyx乙(第23题)图1甲图2图3(第24题)ABCDEFABCMNPQ五、2011浙江湖州压轴题24、如图1,已知正方形OABC的边长为2,顶点A、C分别在x,y轴的正半轴上,M是BC的中点。P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作ME的垂线,垂足为H(如图2)。当点P从点O向点C运动时,点H也随之运动。请直接写出点H所经过的路径长。(不必写出解答过程)。六、2011浙江温州压轴题24、(本题14分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C。记点P关于y轴的对称点为P´(点P´不在y轴上),连结PP´,P´A,P´C.设点P的横坐标为a。(1)当b=3时,○1求直线AB的解析式;○2若点P´的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P´C的交点为D。当P´D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由。yx图2HEDMABCOyx图1DMABCOP七、2011浙江台州最后的两道压轴题23、如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=DEBE.特别地,当点D、E重合时,规定:λA=0.另外,对λB、λC作类似的规定.(1)如图2,在△ABC中,∠C=90°,∠A=30°,求λA、λC;(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):①若△ABC中λA<1,则△ABC为锐角三角形;②若△ABC中λA=1,则△ABC为锐角三角形;③若△ABC中λA>1,则△ABC为钝角三角形.24、已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.①用含b的代数式表示m、n的值;②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.
本文标题:2011年中考数学压轴题
链接地址:https://www.777doc.com/doc-3050572 .html