您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 04力学与结构-应力强度和刚度
第4章杆件的应力、强度和刚度3.1第4章杆件的应力、强度和刚度返回总目录第4章杆件的应力、强度和刚度3.2•截面的几何性质•轴向拉伸和压缩•杆件的剪切和扭转•梁的弯曲应力及强度计算•杆件的组合变形•习题本章内容第4章杆件的应力、强度和刚度3.3教学要求:了解平面图形的静矩、形心、惯性矩、截面模量、惯性半径等几何性质的概念及计算方法;熟悉内力、应力、应变等基本概念;了解材料在轴向拉、压时的力学性能;掌握虎克定律及其应用;熟悉剪切虎克定律、剪应力互等定理;掌握杆件轴向拉压、扭转、剪切、弯曲等基本变形的概念及内力、应力、变形、强度、刚度的计算;重点掌握轴向拉压、圆轴扭转、平面弯曲时梁的强度及刚度的计算。了解杆件组合变形的概念、掌握简单组合变形时杆件的强度计算。第4章杆件的应力、强度和刚度3.4平面图形的几何性质是影响杆件承载能力的重要因素,杆件的应力和变形不仅与杆件的内力有关,而且还与杆件截面的横截面面积、惯性矩、抗弯截面模量W、极惯性矩和抗扭截面模量等平面图形的几何性质密切相关。平面图形的几何性质纯粹是一个几何问题,但它是计算杆件强度、刚度、稳定性的必不可少的几何参数。一、静矩和形心1.静矩如图4.1所示,一任意形状的平面图形,面积为A,在平面图形所在平面内内任意选取一个平面坐标系zoy,在坐标(z,y)处取微面积dA,则微面积dA与坐标y(或坐标z)的乘积称为微面积dA对z轴(或对y轴)的静矩,记作dSz(或dSy)。即截面的几何性质ddzSyAddySzA平面图形上所有微面积对z轴(或对y轴)的静矩之和,称为平面图形对z轴(或对y轴)的静矩,用Sz(或Sy)表示,即ddzzAASSyA(4-1a)ddyyAASSzAddyyAASSzAddyyAASSzAddyyAASSzA(4-1b)第4章杆件的应力、强度和刚度3.5从静矩的定义可以看出,静矩是对特定的坐标轴而言的。选择不同的坐标轴,静矩也不同。静矩的数值可能为正,可能为负,也可能等于零。静矩常用的单位是m3或mm3。若则截面的几何性质2.形心现设平面图形的形心C的坐标为(Zc,Yc)。均质等厚薄板的形心在板平面zoy中的坐标为dAcyAyA(4-2a)dAczAzA(4-2b)0,cyd0AyA则0,czd0AzA由上述可知:平面图形对通过其形心的轴的静矩恒为零;反之,若平面图形对某轴的静矩为零,则此轴必过形心。若平面图形有一个对称轴,则形心在此对称轴上;若平面图形有两个或以上的对称轴,则形心在对称轴的交点上。第4章杆件的应力、强度和刚度3.6【例4.1】矩形截面尺寸如图4.2所示,以矩形的形心为原点建立坐标系zoy,z1通过矩形的底边。试求该矩形对z轴的静矩和对z1轴的静矩。图4.2矩形截面截面的几何性质解:(1)计算矩形截面对z轴的静矩。由于z轴是矩形截面的对称轴,通过截面形心,所以矩形对z轴的静矩等于零,即。(2)计算矩形截面对Z1轴的静矩。0zS2122zchbhSyAbh【例4.2】试确定如图4.3所示的组合截面的形心位置,长度单位为cm。图4.3组合截面解:取坐标zoy,因为y为截面的对称轴,所以形心必在y轴上,即。故只需确定yc。该截面可视为由矩形Ⅰ和矩形Ⅱ组合而成。矩形Ⅰ的面积,形心纵坐标。矩形Ⅱ的面积,形心纵坐标。0cz2181.512cmA118/25cmcy2211010cmA20.5cmcy20.5cmcy1125100.52.95cm1012niciicAyyA第4章杆件的应力、强度和刚度3.7一、惯性矩、惯性积和惯性半径1.惯性矩图4.4惯性矩如图4.4所示,在图形所在平面内任意取一个平面坐标系zoy。微面积dA与坐标y(或坐标z)平方的乘积y2dA或(Z2dA)称为微面积dA对z轴(或对y轴)的惯性矩。整个平面图形上所有微面积对z轴(或对y轴)的惯性矩之和,称为平面图形对z轴(或对y轴)的惯性矩,用Iz(或Iy)表示,即截面的几何性质21dnziIyA21dnyiIzA用积分精确表示为2dzAIyA2dzAIyA(4-3a)2dyAIzA(4-3b)微面积dA与坐标原点O的距离ρ的平方的乘积ρ2dA称为微面积dA对坐标原点O的极惯性矩,整个图形对坐标原点O的极惯性矩用积分表达为第4章杆件的应力、强度和刚度3.8所以由于存在几何关系:即截面对任意两个互相垂直坐标轴的惯性矩之和等于截面对两轴交点的极惯性矩。由惯性矩的定义可知,惯性矩是对坐标轴而言的。同一图形对不同坐标轴的惯性矩也不同。极惯性矩是对点而言的,同一图形对不同点的极惯性矩也不同。式(4-5)中,z2和y2恒为正值,故惯性矩也恒为正值,惯性矩常用的单位是m4或mm4。简单图形的惯性矩可以直接由式(4-5)计算。在建筑工程中,常用图形的惯性矩可在有关计算手册中查到,型钢截面的惯性矩可在型钢表中查找。2.惯性积如图4.4所示,微面积dA与坐标y和坐标z的乘积zydA称为微面积dA对y和z两轴的惯性积,记为zydA。整个图形上所有的微面积对z和y两轴的惯性积之和称为该图形对z和y轴的惯性积,用表示Izy,即截面的几何性质2dAIA(4-4)222zy222dddzyAAAIAzAyAII(4-5)dzyAIzyA(4-6)第4章杆件的应力、强度和刚度3.9惯性积是平面图形对两个正交坐标轴而言的,同一图形对不同的正交坐标轴,其惯性积不同。由于x、y有正有负,因此惯性积也可能有正有负,也可能为零。惯性积的常用单位是m4或mm4。如图4.4所示,微面积dA与坐标y和坐标z的乘积yzdA称为微面积dA对z和y两轴的惯性积,记为yzdA。整个图形上所有的微面积对z和y两轴的惯性积之和称为该图形对z和y轴的惯性积,用Izy表示,即截面的几何性质dzyAIzyA(4-6)惯性积是平面图形对两个正交坐标轴而言的,同一图形对不同的正交坐标轴,其惯性积不同。由于x、y有正有负,因此惯性积也可能有正有负,也可能为零。惯性积的常用单位是m4或mm4。如图4.5所示,y轴是图形的对称轴,在y轴两侧各取一相同的微面积dA,显然,两者的y坐标相等,而z坐标互为相反数。所以对称轴两侧的两个微面积的惯性积也互为相反数,它们之和为零。对于对称图形来说,它们的惯性积必然等于零,即d0zyAIzyA第4章杆件的应力、强度和刚度3.10如果z轴是图形的对称轴,同理可得,3.惯性半径在工程中因为某些计算的特殊需要,经常将图形的惯性矩表示为图形面积A与某一长度平方的乘积,即截面的几何性质0zyI222zzyyIiAIiAIiA(4-7)或写成zzyyIiAIiAIiA(4-8)第4章杆件的应力、强度和刚度3.11截面的几何性质式中,iz、iy、iρ分别称为平面图形对z轴、y轴和极点的惯性半径,也叫回转半径,单位为m或mm。在建筑力学中,分析组合截面压杆的稳定性时,常用惯性半径来表示组合图形截面的几何特征。规则图形的惯性半径可用公式直接计算,或查相关的图表,常用组合截面(如T形、L形截面)的惯性半径可查相关计算手册,也可直接由式(4-8)计算;型钢的惯性半径可查型钢表。4.抗弯截面模量W在计算抗弯构件的应力时,经常用到抗弯截面模量的概念,抗弯截面模量用表示,用下面公式计算:maxIWy(4-9)式(4-9)中是截面关于形心轴的惯性矩,ymax是截面上垂直并距离形心轴最远的点到形心轴的距离。对于低碳钢、铝合金等塑性材料抗拉强度和抗压强度一样大,抗弯截面模量w只有一个值,而对于铸铁等脆性材料抗拉强度和抗压强度不一样大,抗弯截面模量w有两个值,就是式(4-9)中的ymax分别取形心轴两侧距形心轴最远的点到形心轴的距离。【例4.3】矩形截面尺寸如图4.6所示。试计算矩形截面对形心轴z、y的惯性矩、惯性半径、惯性积和抗弯截面模量。第4章杆件的应力、强度和刚度3.12图4.6矩形截面解:(1)计算矩形截面对z轴和y轴的惯性矩。取平行于z轴的微面积dA,dA到z轴的距离为y,则截面的几何性质ddAby32222dd12hhzAbhIyAyby同理可得,矩形截面对y轴的惯性矩:32222dd12bbyAbhIzAzbx(2)计算矩形截面对z轴和y轴的惯性半径:3/121223zzIbhhhiAbh3/121223yyIbhbbiAbh第4章杆件的应力、强度和刚度3.13(3)计算矩形截面对z轴和y轴的惯性积。因为z轴和y轴均是矩形的对称轴,所以:(4)抗弯截面模量:【例4.4】直径为D的圆形截面,如图4.7所示。(1)试计算截面对通过圆心的轴的惯性矩和惯性半径;(2)计算抗弯截面模量。解:(1)以圆心为原点,建立平面坐标系yOz。(2)计算圆截面对原点O的极惯性矩,圆的直径为D,取圆的半径,ρ为截面上任一点到原点的距离,则截面对原点O的极惯性矩为:d0zyAIzyA32max1226IbhbhWyh截面的几何性质/2RD2dAIA微面积(图中阴影部分)为:d2πdA44220ππd2πd232RARDIA由于,圆截面对任意通过圆心的轴对称,所以zyIIIzyII第4章杆件的应力、强度和刚度3.14可得:(3)计算惯性半径(4)计算抗弯截面模量:截面的几何性质4π/264zyDIII图4.7圆形截面42ππ64442zzyIDRDDiiA42ππ64442zzyIDRDDiiA43maxπ64π232IDDWyD5.惯性矩的平行移轴公式前面我们介绍的惯性矩和惯性积的计算方法都是针对平面图形的形心轴的,实际上,惯性矩和惯性积可以针对平面内任意轴。图4.8惯性矩的平行移轴如图4.8所示C点是截面的形心。zc轴和yc轴通过截面形心。z轴和y轴是分别和zc轴和yc轴平行的坐标轴且y轴与yc轴相距为b,z轴与zc轴相距为a。若图形对通过形心的坐标轴的惯性矩和惯性积分别为Izc、Iyc及Izyc,下面计算图形对z轴和y轴的惯性矩。微面积dA在两个坐标系中的坐标有如下关系:第4章杆件的应力、强度和刚度3.15截面的几何性质czzbcyya根据惯性矩定义,图形对z轴的惯性矩为:2222d()dd2ddzcccccAAAAAIyAyaAyAayAaA式中:2dczcAyAId0czAyAS(截面面积对自身形心轴的静矩为零)于是得到2zzcIIaA(4-10a)同理可得:2yycIIbA(4-10b)式(4-10a)、式(4-10b)分别为惯性矩的平行移轴公式。式中Izc和Iyc是对平面图形形心轴的惯性矩。式(4-10a)、式(4-10b)分别表明:图形对任意轴的惯性矩,等于图形对与该轴平行的形心轴的惯性矩加上图形面积与两平行轴距离平方的乘积。由于a2(或b2)恒为正值,故在所有平行轴中,平面图形对形心轴的惯性矩最小。第4章杆件的应力、强度和刚度3.16【例4.5】用平移轴公式计算图4.2中矩形截面对底边的惯性矩。解:(1)计算截面对z的惯性矩:(2)根据惯性矩的平移轴公式,得:截面的几何性质312zcbhI2333121243zzchbhbhbhIIA第4章杆件的应力、强度和刚度3.17轴向拉伸和压缩一、轴向拉伸和压缩的概念轴向拉伸变形和轴向压缩变形是杆件的基本变形之一,在工程中经常见到。如图4.9(a)所示三角形托架中的斜杆,在荷载作用下就发生轴向压缩变形;还有桁架中的所有杆件(如图4.9(b)所示),发生的都是轴向变形(拉伸或压缩);屋架中的水平拉杆(图4.9(c)AB线上各杆),发生轴向拉伸变形;建筑结构中的柱子(如图4.9(d)所示)发生轴向压缩变形等。这些杆件受力的共同特点是:作用在杆件上的外力的作用线与杆
本文标题:04力学与结构-应力强度和刚度
链接地址:https://www.777doc.com/doc-3050887 .html