您好,欢迎访问三七文档
第10讲相关与回归分析内容提要10.1变量间关系的度量10.2一元线性回归10.3多元线性回归10.1变量间关系的度量10.1.1变量间的关系10.1.2相关关系的描述与测度10.1.3相关系数的显著性检验变量间的关系函数关系1.是一一对应的确定关系2.设有两个变量x和y,变量y随变量x一起变化,并完全依赖于x,当变量x取某个数值时,y依确定的关系取相应的值,则称y是x的函数,记为y=f(x),其中x称为自变量,y称为因变量3.各观测点落在一条线上xy函数关系(几个例子)某种商品的销售额y与销售量x之间的关系可表示为y=px(p为单价)圆的面积S与半径R之间的关系可表示为S=R2企业的原材料消耗额y与产量x1、单位产量消耗x2、原材料价格x3之间的关系可表示为y=x1x2x3相关关系(correlation)1.变量间关系不能用函数关系精确表达2.一个变量的取值不能由另一个变量唯一确定3.当变量x取某个值时,变量y的取值可能有几个4.各观测点分布在直线周围xy相关关系(几个例子)父亲身高y与子女身高x之间的关系收入水平y与受教育程度x之间的关系粮食单位面积产量y与施肥量x1、降雨量x2、温度x3之间的关系商品的消费量y与居民收入x之间的关系商品销售额y与广告费支出x之间的关系相关关系(类型)正相关负相关线性相关非线性相关正相关负相关完全相关不相关相关关系相关关系的描述与测度(散点图)相关分析及其假定1.相关分析要解决的问题变量之间是否存在关系?如果存在关系,它们之间是什么样的关系?变量之间的关系强度如何?样本所反映的变量之间的关系能否代表总体变量之间的关系?2.为解决这些问题,在进行相关分析时,对总体有以下两个主要假定两个变量之间是线性关系两个变量都是随机变量散点图(scatterdiagram)不相关负线性相关正线性相关非线性相关完全负线性相关完全正线性相关散点图(例题分析)【例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的增长,这给银行业务的发展带来较大压力。为弄清不良贷款形成的原因,管理者希望利用银行业务的有关数据进行定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据散点图(例题分析)散点图(不良贷款对其他变量的散点图)不良贷款与贷款余额的散点图024681012140100200300400贷款余额不良贷款不良贷款与贷款项目个数的散点图02468101214010203040贷款项目个数不良贷款不良贷款与固定资产投资额的散点图02468101214050100150200固定资产投资额不良贷款不良贷款与累计应收贷款的散点图024681012140102030累计应收贷款不良贷款散点图(5个变量的散点图矩阵)不良贷款贷款余额累计应收贷款贷款项目个数固定自产投资相关关系的描述与测度(相关系数)相关系数(correlationcoefficient)1.度量变量之间关系强度的一个统计量2.对两个变量之间线性相关强度的度量称为简单相关系数3.若相关系数是根据总体全部数据计算的,称为总体相关系数,记为4.若相关系数是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为r也称为线性相关系数(linearcorrelationcoefficient)或称为Pearson相关系数(Pearson’scorrelationcoefficient)相关系数(计算公式)样本相关系数的计算公式22)()())((yyxxyyxxr或化简为2222yynxxnyxxynr相关系数(例题分析)用Excel计算相关系数相关系数的性质性质1:r的取值范围是[-1,1]|r|=1,为完全相关r=1,为完全正相关r=-1,为完全负正相关r=0,不存在线性相关关系-1r0,为负相关0r1,为正相关|r|越趋于1表示关系越强;|r|越趋于0表示关系越弱相关系数的性质(取值及其意义的图解)-1.0+1.00-0.5+0.5完全负相关无线性相关完全正相关负相关程度增加r正相关程度增加相关系数的性质性质2:r具有对称性。即x与y之间的相关系数和y与x之间的相关系数相等,即rxy=ryx性质3:r数值大小与x和y原点及尺度无关,即改变x和y的数据原点及计量尺度,并不改变r数值大小性质4:仅仅是x与y之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系性质5:r虽然是两个变量之间线性关系的一个度量,却不一定意味着x与y一定有因果关系相关系数的经验解释1.|r|0.8时,可视为两个变量之间高度相关2.0.5|r|0.8时,可视为中度相关3.0.3|r|0.5时,视为低度相关4.|r|0.3时,说明两个变量之间的相关程度极弱,可视为不相关5.上述解释必须建立在对相关系数的显著性进行检验的基础之上相关系数的显著性检验相关系数的显著性检验(检验的步骤)1.检验两个变量之间是否存在线性相关关系2.采用R.A.Fisher提出的t检验3.检验的步骤为提出假设:H0:;H1:0)2(~122ntrnrt计算检验的统计量:确定显著性水平,并作出决策•若tt,拒绝H0•若tt,不拒绝H0相关系数的显著性检验(例题分析)对不良贷款与贷款余额之间的相关系数进行显著性检验(0.05)1.提出假设:H0:;H1:02.计算检验的统计量5344.78436.012258436.02t3.根据显著性水平=0.05,查t分布表得t(n-2)=2.069由于t=7.5344t(25-2)=2.069,拒绝H0,不良贷款与贷款余额之间存在着显著的正线性相关关系相关系数的显著性检验(例题分析)各相关系数检验的统计量相关系数的显著性检验(需要注意的问题)1.即使统计检验表明相关系数在统计上是显著的,并不一定意味着两个变量之间就存在重要的相关性2.因为在大样本的情况下,几乎总是导致相关系数显著比如,r=0.1,在大样本的情况下,也可能使得r通过检验,但实际上,一个变量取值的差异能由另一个变量的取值来解释的比例只有10%,这实际上很难说明两个变量之间就有实际意义上的显著关系10.2一元线性回归10.2.1一元线性回归模型10.2.2参数的最小二乘估计10.2.3回归直线的拟合优度10.2.4显著性检验10.2.5利用回归方程进行估计和预测什么是回归分析?(regression)1.从一组样本数据出发,确定变量之间的数学关系式2.对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著3.利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度趋向中间高度的回归回归这个术语是由英国著名统计学家FrancisGalton在19世纪末期研究孩子及其父母的身高时提出来的。Galton发现身材高的父母,他们的孩子身材也高。但这些孩子平均起来并不像他们的父母那样高。对于比较矮的父母情形也类似:他们的孩子比较矮,但这些孩子的平均身高要比他们的父母的平均身高高。Galton把这种孩子的身高向平均值靠近的趋势称为一种回归效应,而他发展的研究两个数值变量的方法称为回归分析回归模型的类型线性回归非线性回归一元回归线性回归非线性回归多元回归回归模型一元线性回归模型一元线性回归1.涉及一个自变量的回归2.因变量y与自变量x之间为线性关系被预测或被解释的变量称为因变量(dependentvariable),用y表示用来预测或用来解释因变量的一个或多个变量称为自变量(independentvariable),用x表示3.因变量与自变量之间的关系用一个线性方程来表示回归模型(regressionmodel)1.回答“变量之间是什么样的关系?”2.方程中运用1个数值型因变量(响应变量)被预测的变量1个数值型或分类型自变量(解释变量)用于预测的变量3.主要用于预测和估计一元线性回归模型1.描述因变量y如何依赖于自变量x和误差项的方程称为回归模型2.一元线性回归模型可表示为y=b+b1x+y是x的线性函数(部分)加上误差项线性部分反映了由于x的变化而引起的y的变化误差项是随机变量反映了除x和y之间的线性关系之外的随机因素对y的影响是不能由x和y之间的线性关系所解释的变异性b0和b1称为模型的参数回归模型中为什么包含误差项理由1:理论的含糊性。即使有决定y的行为的理论,而且常常是不完全的,影响y的变量不是无所知就是知而不确,因此不妨设作为模型所排除或忽略的全部变量的替代变量误差项是未包括在模型中而又影响着y的全部变量的替代物,但为什么不把这些变量引进到模型中来?换句话说,为什么不构造一个含有尽可能多个变量的复回归模型?古扎拉蒂在《计量经济学》一书中列出了7点理由回归模型中为什么包含误差项理由2:数据的欠缺。即使我们明知被忽略变量中的一些变量,并因而考虑用一个复回归而不是一个简单回归,我们却不一定能得到关于这些变量的数量信息理由3:核心变量与周边变量。影响y的全部或其中的一些变量,合起来的影响如此之小,充其量是一种非系统的或随机的影响。从实际考虑以及从成本上计算,把它们一一引入模型是划不来的。所以人们希望把它们的联合效应当作一个随机变量来看待回归模型中为什么包含误差项理由4:人类行为的内在随机性。即使我们成功地把所有有关的变量都引进到模型中来,在个别的y中仍不免有一些“内在”的随机性,这是无论我们花多少力气都解释不了的。随机项也许能很好地反映这种随机性理由5:糟糕的替代变量。虽然经典回归模型假定变量y和x能准确地观测,但实际上数据会受到测量误差的扰乱。由于这些变量不可直接观测,故实际上我们用替代变量。这时误差项又可以用来代表测量误差回归模型中为什么包含误差项理由6:节省原则。我们想保持一个尽可能简单的回归模型。如果我们能用两个或三个变量就“基本上”解释了y的行为,并且如果我们的理论完善或扎实的程度还没有达到足以提出可包含进来的其他变量,那么为什么要引进更多的变量呢?让去代表所有的其他变量好了。当然,我们不应该只为了保持回归模型简单而排除有关的和重要的变量回归模型中为什么包含误差项理由7:错误的函数形式。即使我们有了解释一种现象的在理论上正确的变量,并且能获得这些变量的数据,我们却常常不知道回归子(因变量)和回归元(自变量)之间的函数形式是什么形式。在双变量模型中,人们往往能从散点图来判断关系式的函数形式,而在多变量回归模型中,由于无法从图形上想像一个多维的散点图,要决定适当的函数形式就不容易一元线性回归模型(基本假定——高斯假定)1.因变量y与自变量x之间具有线性关系2.在重复抽样中,自变量x的取值是固定的,即假定x是非随机的3.误差项ε是一个期望值为0的随机变量,即E(ε)=0。对于一个给定的x值,y的期望值为E(y)=b0+b1x4.对于所有的x值,ε的方差σ2都相同5.误差项ε是一个服从正态分布的随机变量,且相互独立。即ε~N(0,σ2)独立性意味着对于一个特定的x值,它所对应的ε与其他x值所对应的ε不相关对于一个特定的x值,它所对应的y值与其他x所对应的y值也不相关回归方程(regressionequation)1.描述y的平均值或期望值如何依赖于x的方程称为回归方程2.一元线性回归方程的形式如下3.E(y)=b0+b1
本文标题:10相关与回归分析
链接地址:https://www.777doc.com/doc-3057033 .html