您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 2009级硕士生《试验设计与数据处理》试题
石河子大学2009至2010年第1学期2009级硕士生《试验设计与数据处理》试题题号一二三四五总分得分1、已知某种半成品在生产过程中的废品率y与它的某种化学成分x有关,现测得8对数据如下:x(0.01%)3436384042444648y(%)1.301.000.900.500.300.400.500.60试选配三阶正交多项式回归,进行显著性检验;给定x=41.(0.01%),求95%区间估计及预测区间。分析如下:REGRESSION/MISSINGLISTWISE/STATISTICSCOEFFOUTSCI(95)RANOVACHANGE/CRITERIA=PIN(.05)POUT(.10)CIN(95)/NOORIGIN/DEPENDENT废品率/METHOD=ENTER化学成分/SAVEICINZRESID.(图一)VariablesEntered/RemovedbModelVariablesEnteredVariablesRemovedMethod1化学成分a.Enter(图二)ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimateChangeStatisticsRSquareChangeFChangedf1df2Sig.FChange1.771a.595.527.23658.5958.80616.025(图三)ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression.4931.4938.806.025aResidual.3366.056Total.8297a.Predictors:(Constant),化学成分b.DependentVariable:废品率(图四)CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.95.0%ConfidenceIntervalforBBStd.ErrorBetaLowerBoundUpperBound1(Constant)2.908.7533.862.0081.0664.751化学成分-5.4171.825-.771-2.968.025-9.883-.950a.DependentVariable:废品率如图三所示:sig=0.0250.05说明该数据显著。如图四所示:在95%的区间估计为(1.066,4.751)2、制动距离的实验(日本峰秀郎1968)取三个因素A、B、C,其水平如下:A:速度A1=30,A2=55,A3=80(km/小时)B:路面B1=干路面,B2=湿路面C:车种C1=面包车,C2=克罗那轮胎用新的。实验用三元配置,重复2次,测得制动距离数据如下表:ABC数据1(m)数据2(m)1113.23.31123.73.81215.25.01226.46.02119.59.421210.811.022116.216.322219.219.431127.026.631230.131.232150.249.832260.560.3试取对数,作方差分析,用显著因素求速度与制动距离的关系式。(图1)VariablesEntered/RemovedaModelVariablesEnteredVariablesRemovedMethod1速度.Stepwise(Criteria:Probability-of-F-to-enter=.050,Probability-of-F-to-remove=.100).a.DependentVariable:制动距离(图2)ModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimate11.000a1.000..a.Predictors:(Constant),速度(图3)ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression.1251.125..aResidual.0000.Total.1251a.Predictors:(Constant),速度b.DependentVariable:制动距离(图4)CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)2.600.000..速度.020.0001.000..a.DependentVariable:制动距离(图5)ExcludedVariablesbModelBetaIntSig.PartialCorrelationCollinearityStatisticsTolerance1路面.a....000车种.a....000a.PredictorsintheModel:(Constant),速度b.DependentVariable:制动距离有上图得知:因素速度对结果影响显著图1、图2,在图4的相关系数中知,速度与制动距离的关系式:Y=2.6+0.2x13、某化工厂用正交试验法寻求提高某产品的回收率。试验目的:提高回收率;试验指标:回收率(望大特性,即越大越好);取四个因素A,B,C,D,其水平如下:A尿素量(单位:升):A1=1.0,A2=1.4,A3=1.8B水量(单位:毫升):B1=120,B2=200,B3=280C反应时间(单位:分):C1=10,C2=15,C3=20D溶剂量(单位:升):D1=5,D2=15,D3=25根据专业知识,无须考虑因素间的交互作用,故选用L9(34)进行方案设计,方案设计及测得数据如下表:因素试验号A1B2C3D4回收率yi(%)11(1.0)1(120)1(10)1(5)11.52122222.73133322.642(1.4)12(15)319.0522(200)3128.562312(15)24.073(1.8)13(20)225.183213(25)30.3933(280)2133.3K1K2K356.871.588.755.681.579.965.875.076.273.371.871.9y..=217CT=5232.11ST=332.43S169.95140.4321.580.47试作方差分析,寻求试验指标与显著因素的回归关系式。方差分析因素偏差平方和自由度F比F临界值显著性尿素量169.9492362.36519.000*水140.4292299.42219.000*反应时间21.582246.01719.000*溶剂量0.46921.00019.000误差0.472在上表的方差分析中,因素:反应时间、水、尿素量对结果影响显著。试验指标与显著因素的回归关系式:Y=0.47+169.949x1+140.429x2+21.582x34、平炉炼钢过程中,由于矿石及炉气的氧化作用,铁水的总含碳量在不断降低。根据经验,一炉钢在冶炼初期(熔化期)中总的去碳量y与所加两种矿石(天然矿石与烧结矿石)的量12,xx及熔化时间3x(熔化时间越长则去碳量越多)有关,且成线性关系。经实测某号平炉得到49组(123,,,yxxx)数据(见下表)。序号x1x2x3y序号x1x2x3y1218504.330231512374.4583279403.648532415494.65693514464.48333020454.52124123435.546834616424.8655120645.49735417485.35666312403.112536104484.60987317645.118237414362.3815865393.875938513363.8746978374.673998514.591910023554.953640613545.158811316605.00641581005.437312018495.270142511443.9961384505.37724386634.39714614515.484944213554.062215021514.5964578502.290516314515.664546410454.711517712566.079547105404.53118160483.219448317645.363719616455.807649415726.077120015524.7306Σ2595782411224.51692190404.6805Σ/495.28571411.7959249.204084.5819782246323.127223017472.6104Σ()i2203185721248791073.6362490443.717425216393.8946Σx1i()ji2137123551180.2992696392.706627125515.6314Σx2i()ij292162717.51428613415.815229127475.1302Σx3i()ij11292.7230024615.391(1)试用统计软件建立y关于123,,xxx的线性回归方程并作回归方程和回归系数的显著性检验并说明软件输出的结果中各主要参数的意义及算式;(表1)CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.95.0%ConfidenceIntervalforBBStd.ErrorBetaLowerBoundUpperBound1(Constant).696.865.804.426-1.0472.439x1.161.060.6172.663.011.039.282x2.108.037.6722.876.006.032.183x3.036.011.4243.400.001.015.057a.DependentVariable:y(表2)ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression15.22935.0767.698.000aResidual29.67545.659Total44.90548a.Predictors:(Constant),x3,x1,x2b.DependentVariable:y由表1得:y关于123,,xxx的线性回归方程为Y=0.696+0.161x1+0.108x2+0.036x3(2)写出所有可能的回归方程并作回归方程的比较,说明比较的根据;1.Y=0.696+0.161x1+0.108x2+0.036x3(顺序进入)2.Y=2.648+0.039x3(逐步进入)在逐步进入中,只有因素3,说明因素1、2对结果影响不显著。在顺序进入的回归比较中,对因素全部考虑在内;而在逐步进入的回归比较分析中,对于影响不显著的因素会依次剔除,直至有影响显著因素出现。(3)试用软件作逐步回归,逐步写出引入或剔除自变量的过程,说明输出结果中各主要参数的意义及算式;以下是逐步回归的分析过程:(表1)VariablesEntered/RemovedaModelVariablesEnteredVariablesRemovedMethod1x3.Stepwise(Criteria:Probability-of-F-to-enter=.050,Probability-of-F-to-remove=.100).a.DependentVariable:y(表2)ModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimateChangeStatisticsRSquareChangeFChangedf1df2Sig.FChange1.464a.215.198.86606.21512.868147.001a.Predictors:(Constant),x3(表3)ANO
本文标题:2009级硕士生《试验设计与数据处理》试题
链接地址:https://www.777doc.com/doc-3064751 .html