您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2010-2011学年七年级数学下册期末总复习专题(三)解答题
2010-2011学年七年级数学下册期末总复习专题(三)解答题一、解答题(共30小题,满分7分)1.解方程:.2.3.计算:4.解方程组:.5..6.3x﹣2=5x+4.7..8..9.已知关于x的方程4(x+2)﹣5=3a+2的解不大于,求字母a的取值范围.10.已知方程组的解满足方程x+y=10,求k.11.已知是方程组的解,求a、b的值.12.a为何值时,方程组的解x、y互为相反数并求出方程组的解.13.求不等式组的整数解.14.解决问题:(1)甲、乙同时各掷一枚骰子一次.(2)求出两个朝上数字的积.(3)若得到的积为偶数则甲得1分,否则乙得1分.(4)这个游戏对甲、乙双方公平吗?为什么?(5)若不公平,你们能修改规则,使之公平吗?你们能想出多少种方法.15.已知:BE平分∠ABC,DE∥BC,F为BE中点,试说明:DF⊥BE.16.如图在△ABC中,∠B=40°,∠BCD=100°,EC平分∠ACB,求∠A与∠ACE的度数.17.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?18.如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN.请问:BM=CN吗?请说明理由.19.(2000•内蒙古)如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.20.用自己的语言解释下列问题:(1)一种彩票的中奖率为,你买1000张,一定中奖吗?(2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?21.等腰△ABC中,AB=AC,腰上的中线BD将这个等腰三角形的周长分成21和12两部分,求此三角形的腰长及底边长.22.列方程组解应用题(1)某人买甲、乙两种商品共11公斤,用去120元.若甲种商品每公斤12元,乙种商品每公斤10元,则两种商品各买多少公斤?各花去多少元?(2)某工人原计划用26天生产一批零件,工作了2天后,因改变了操作方法,每天比原来多生产5个零件,结果提前了4天完成了任务,问原来每天生产多少个零件,这批零件共有多少个?23.根据下列语句,用三角板、圆规或直尺作图,不要求写作法:(1)过点C作直线MN∥AB;(2)作△ABC的高CD.24.图中画出∠A,∠B的平分线交于点O.再画出点O到AB的垂线段OE,点O到BC的垂线段OF,(用圆规和三角尺作图,要求保留作图痕迹)25.指出下列图形中的轴对称图形,画出它们的对称轴.27.(1)找出下列图形的对称轴,画出它们的对称轴.(2)如图,EFGH为矩形台球桌面,现有一白球A和一彩球B.应怎样击打白球A,才能使白球A碰撞台边EF,反弹后能击中彩球B(保留作图痕迹,不必写画法)28.(7分)作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.29.以虚线为对称轴画出下列图形的另一半.30.河的一旁有两个村子A、B,要在河边建一水泵站引水到村里.一村民画了一张图,以直线l表示一条河,在河的另一边作A的对称点C,连接BC得与l的交点P,那么P到A、B的距离和总比l上其它点到A、B的距离和短,你能说出其中的道理吗?2010-2011学年七年级数学下册期末总复习专题(三)解答题参考答案与试题解析一、解答题(共30小题,满分7分)1.解方程:.考点:解一元一次方程.1561964专题:方程思想.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.点评:本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.2.考点:解一元一次方程.1561964分析:首先去括号,再移项,合并同项,系数化1,即可求得方程的解.解答:答:去括号得:x﹣﹣6=x+1,移项得:x﹣x=1+6+,合并同类项得:﹣x=,系数化为1得:.点评:本题比较简单,只是考查了一元一次方程的解法.3.计算:考点:解二元一次方程组.1561964分析:因为未知数y的系数互为相反数,所以可用加减消元法解方程组.解答:解:①﹣②,得﹣x=﹣1,x=1,把x=1代入①,得y=9,∴原方程组的解为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.4.解方程组:.考点:解二元一次方程组.1561964专题:计算题.分析:解此题可以采用加减法,方程一乘以2加方程二乘以3即可消掉未知数y,得到关于x的一元一次方程,解方程即可求得.解答:解:,①×2+②×3,得17x=51,∴x=3.把x=3代入②,得y=﹣3,∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要注意选择适宜的解题方法.5..考点:解二元一次方程组.1561964分析:先将方程组化简整理成二元一次方程组的一般形式,再根据未知数的系数特点选择解法.解答:解:将原方程组化简,得,②×2﹣①,得y=1.把y=1代入②,得2x+3=﹣3,解得x=﹣3.所以原方程组的解为.点评:本题考查二元一次方程组的解法,有加减法和代入法两种.一般来说,当方程组中有一个未知数的系数的绝对值是1或常数项为0时,选用代入法较简单,其它情况下,选用加减法较简单.6.3x﹣2=5x+4.考点:解一元一次方程.1561964专题:计算题.分析:此题比较简单,移项、合并、化系数为1,即可求得.解答:解:移项得:3x﹣5x=4+2合并得:﹣2x=6化系数为1得:x=﹣3.点评:本题比较简单,解此题要注意移项要变号.7..考点:解一元一次不等式组.1561964专题:计算题.分析:分别求出个各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤2,由②得,x<﹣2,故原不等式组的解集为:x<﹣2.点评:本题考查的是解一元一此不等式组,解答此类问题时要分别求出不等式组中各不等式的解集,再求出其公共部分.8..考点:解一元一次不等式组.1561964专题:计算题.分析:先求出不等式组中每一个不等式的解集,由①可得出x≥﹣1,由②可得出x<3,再求出它们的公共部分即可解答.解答:解:不等式组,由①得,3x+6≥2x+5,解得,x≥﹣1;由②得,3(x﹣1)<2x,解得,x<3,所以,不等式组的解集为﹣1≤x<3.点评:本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.已知关于x的方程4(x+2)﹣5=3a+2的解不大于,求字母a的取值范围.考点:解一元一次不等式;解一元一次方程.1561964专题:计算题.分析:先解关于x的方程4(x+2)﹣5=3a+2,又因为解不大于,所以原一元一次方程的解小于等于,从而求出字母a的取值范围.解答:解:∵4(x+2)﹣5=3a+2,∴4x+8﹣5=3a+2∴x=,∴≤,∴a≤1.点评:本题考查了含有字母系数的一元一次方程的解和一元一次不等式的解集,具有一定的综合性.10.已知方程组的解满足方程x+y=10,求k.考点:解三元一次方程组.1561964专题:计算题.分析:根据题意,由x+y=10和2x+y=8,求出x、y的值,然后把x、y的值代入3kx+2y=6k,即可求出k的值.解答:解:∵x+y=10①,2x+y=8②,由①﹣②得:x=﹣2,y=12,把x、y的值代入3kx+2y=6k得:﹣6k+24=6k,解得k=2.点评:本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.11.已知是方程组的解,求a、b的值.考点:二元一次方程组的解.1561964分析:先把x、y的值代入方程组,然后得到一个关于a、b的方程组,再解方程即可.解答:解:把代入到方程组中,得,解之,得.点评:本题考查的是二元一次方程的解法.先将已知代入方程得到一组新的方程,然后解方程求出a、b的值.运用代入法是解二元一次方程常用的方法.12.a为何值时,方程组的解x、y互为相反数并求出方程组的解.考点:解三元一次方程组.1561964分析:理解清楚题意,建立三元一次方程组,解出a的数值.解答:解:由题意得,,把③代入①得:y=﹣a,把③代入②得:x=,∵x、y互为相反数,∴=0,解得a=8,∴.点评:先用含的代数式表示x,y,即解关于x,y的方程组,再代入x=﹣y中即可.13.求不等式组的整数解.考点:一元一次不等式组的整数解.1561964专题:计算题.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:解不等式组得﹣<x≤1,所以不等式的整数解是﹣1,0,1.点评:正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解决问题:(1)甲、乙同时各掷一枚骰子一次.(2)求出两个朝上数字的积.(3)若得到的积为偶数则甲得1分,否则乙得1分.(4)这个游戏对甲、乙双方公平吗?为什么?(5)若不公平,你们能修改规则,使之公平吗?你们能想出多少种方法.考点:游戏公平性.1561964分析:游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等即可.解答:解:所得积是奇数的概率为×=,故甲获胜的概率为,乙获胜的概率为,甲乙获胜概率不相等,故游戏对甲乙双方不公平.能修改规则使之公平.改为:所得两个数字同为奇数则甲获胜,同为偶数则乙获胜.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.15.已知:BE平分∠ABC,DE∥BC,F为BE中点,试说明:DF⊥BE.考点:平行线的性质;角平分线的定义;等腰三角形的判定与性质.1561964专题:证明题.分析:要使DF⊥BE.因为F为BE中点,所以只需证明BD=DE即可.解答:证明:∵BE平分∠ABC,∴∠ABE=∠FBC,∵DE∥BC,∴∠DEB=∠EBC,∴∠ABE=∠DEB,∴BD=DE,∵F为BE中点,∴DF⊥BE.点评:本题综合考查了平行线和角平分线的性质,等腰三角形的性质及判定.16.如图在△ABC中,∠B=40°,∠BCD=100°,EC平分∠ACB,求∠A与∠ACE的度数.考点:三角形的外角性质.1561964分析:首先根据三角形的一个外角等于和它不相邻的两个内角的和即可求得∠A的度数;再根据平角的定义及角平分线的性质求出∠ACB的度数即可.解答:解:∵∠B=40°,∠BCD=100°,∴∠A=∠BCD﹣∠B=60°,∵∠BCD=100°,∴∠ACB=180°﹣100°=80°,又∵EC平分∠ACB,∴∠ACE=∠ACB=40°.点评:考查了三角形的外角性质、角平分线的概念.17.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.1561964专题:探究型.分析:(1)∠PCD=∠PDC.由于P点是∠AOB平分线上一点,根据角平分线的性质可以推出PC=PD,然后利用等腰三角形的性质即可得到结论;(2)根据已知条件首先容易证明Rt△POC≌Rt△POD,从而得到OC=OD,由(1)有PC=PD,利用线段的垂直平分线的判定即可证明结论.解答:解:(1)∠PCD=∠PDC.理由:∵OP是∠AOB的平分线,且PC⊥OA,PD⊥OB,∴PC=PD,∴
本文标题:2010-2011学年七年级数学下册期末总复习专题(三)解答题
链接地址:https://www.777doc.com/doc-3065073 .html