您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2010年北京市中考数学模拟试题
12010年中考数学模拟题*考试时间120分钟试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题4分,共40分)1.估算272的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间2.把多项式2288xx分解因式,结果正确的是()A.224xB.224xC.222xD.222x3.若m+n=3,则222426mmnn的值为()A.12B.6C.3D.04.二元一次方程组2,0xyxy的解是()A.0,2.xyB.2,0.xyC.1,1.xyD.1,1.xy5.如图所示的几何体的主视图是()6.下列运算中,正确的是()A.x+x=2xB.2x-x=1C.(x3)3=x6D.x8÷x2=x47.如图,点A在双曲线6yx上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.27B.5C.47D.228.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN,B.3DE=2MN,C.3∠A=2∠FD.2∠A=3∠FA.B.C.D.EDCNMHGFBA2图59.在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点AB.点BC.点CD.点D10.如图,AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15B.20C.15+52D.15+55二、填空题(共5小题,每题4分,满分20分.请将答案填入答题卡的相应位置)11.分解因式:22xx=12.请写出一个比5小的整数13.a、b为实数,且ab=1,设P=11abab,Q=1111ab,则PQ(填“>”、“<”或“=”).14.如图4所示,A、B、C、D是圆上的点,17040A°,°,则C度.15.已知,A、B、C、D、E是反比例函数16yx(x0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)三、解答题(满分90分.请将答案填入答题卡的相应位置)16.(每小题7分,共14分)(1)解不等式:5x–12≤2(4x-3)CBADPABCDMNPP1M1N1ABCD1(图4)3(2)先化简,再求值。其中3x,2y222)11(yxyxxyxy17.(每小题8分,共16分)(1)计算:8-(3-1)0+|-1|.(2)整理一批图书,如果由一个人单独做要花60小时。现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。假设每个人的工作效率相同,那么先安排整理的人员有多少人?18.(满分10分)在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.19.(满分12分)以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:ACBDE4(1)从以上统计图可知,九年级(1)班共有学生人;(2)图7-1中a的值是;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间(填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了人。20.(满分12分)如图8,在边长为1的小正方形组成的网格中,ABC△的三个顶点均在格点上,请按要求完成下列各题:(1)用签字笔...画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在ACD△的三个内角中任选一个锐角..,若你所选的锐角是,则它所对应的正弦函数值是。(4)若E为BC中点,则tan∠CAE的值是图8521.(满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.22.(满分14分)如图,已知直线128:33lyx与直线2:216lyx相交于点Cll12,、分别交x轴AB、两点.矩形DEFG的顶点DE、分别在直线12ll、上,顶点FG、都在x轴上,且点G与点B重合.(1)求ABC△的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)tt≤≤秒,矩形DEFG与ABC△重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.ADBEOCFxyy1ly2l(G)yxPQBCNMOA62010年中考模拟题(六)数学试题参考答案及评分标准一、选择题(每小题4分,共40分)1.C2.C3.A;4.C5.D;6.A7.A8.B9.B10.C二、填空题(每小题4分,共20分)11.x(x-2);12.答案不唯一,小于或等于2的整数均可,如:2,1等;13.=;14.40;15.13π-26三、解答题16.(1)(本题满分7分)解:5x–12≤8x-6.································································3分3x≤6.····················································5分x≥-2.······················································7分(2)解:原式=2)(yxxyxyyx=yx1……………………………………………………4分将3x,2y代入,则原式=23231……………………………………7分17.(1)解:08(31)1221122……………………8分(2)解:设先安排整理的人员有x人,依题意得,2(15)16060xx……………………4分解得,x=10.7答:先安排整理的人员有10人.……………………8分18.证明:过点C作CF⊥AB,垂足为F.………………1分∵在梯形ABCD中,AB∥CD,∠A=90°,∴∠D=∠A=∠CFA=90°.∴四边形AFCD是矩形.AD=CF,BF=AB-AF=1.………………………………3分在Rt△BCF中,CF2=BC2-BF2=8,∴CF=22.∴AD=CF=22.………………………………………………………………5分∵E是AD中点,∴DE=AE=12AD=2.……………………………………6分在Rt△ABE和Rt△DEC中,EB2=AE2+AB2=6,EC2=DE2+CD2=3,EB2+EC2=9=BC2.∴∠CEB=90°.………………………………………………………9分∴EB⊥EC.…………………………10分(其他不同证法,参照以上标准评分)19.(每小题各3分,共12分)(1)50(2)3(3)普遍增加了(4)1520.(每小题3分,共12分)(1)如图(2)5(3)∠CAD,55(或∠ADC,552)(4)2121.解:(1)点M··················································································1分(2)经过t秒时,NBt,2OMt则3CNt,42AMt∵BCA=MAQ=458∴3QNCNt∴1PQt·······················································2分∴11(42)(1)22AMQSAMPQtt△22tt······························································································3分∴2219224Sttt··································································5分∵02t≤≤∴当12t时,S的值最大.·······················································6分(3)存在.··························································································7分设经过t秒时,NB=t,OM=2t则3CNt,42AMt∴BCA=MAQ=45····································································8分①若90AQM,则PQ是等腰Rt△MQA底边MA上的高∴PQ是底边MA的中线∴12PQAPMA∴11(42)2tt∴12t∴点M的坐标为(1,0)·······································································10分②若90QMA,此时QM与QP重合∴QMQPMA∴142tt∴1t∴点M的坐标为(2,0)·······································································12分22.(1)解:由28033x,得4xA.点坐标为40,.由2160x,得8xB.点坐标为80,.∴8412AB.·······································································2分由2833216yxyx,.解得56xy,.∴C点的坐标为56,.······························3分9∴111263622ABCCSABy△·.··················································4分(2)解:∵点D在1l上且2888833DBDxxy,.∴D点坐标为88,.··········································································5分又∵点E在2l上且821684EDEEyyxx,..∴E点坐标为48,.·········································································6分∴8448OEEF,.································································8分(3)解法一:①当03t≤时,如图1,矩形D
本文标题:2010年北京市中考数学模拟试题
链接地址:https://www.777doc.com/doc-3069493 .html