您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2009年全国各地中考试题压轴题精选讲座八
-1-2009年全国各地中考试题压轴题精选讲座八探究、操作性问题(浙江省宁波滨海学校数学组方德懿)【知识纵横】探索研究是通过对题意的理解,解题过程由简单到难,在承上启下的作用下,引导学生思考新的问题,大胆进行分析、推理和归纳,即从特殊到一般去探究,以特殊去探求一般从而获得结论,有时还要用已学的知识加以论证探求所得结论。操作性问题是让学生按题目要求进行操作,考察学生的动手能力、想象能力和概括能力。【典型例题】【例1】(陕西省)问题探究(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由.(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.问题解决(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB和△CP′D钢板,且∠APB=∠CP′D=60°.请你在图③中画出符合要求的点P和P′,并求出△APB的面积(结果保留根号).-2-【例2】(浙江省宁波市)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.(1)四边形OABC的形状是_______________,当α=90°时,BQBP的值是____________;(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求BQBP的值;②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求ΔOPB′的面积.(3)在四边形OABC旋转过程中,当0<α≤180°时,是否存在这样的点P和点Q,使BP=21BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.-3-【例3】(浙江省丽水市)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(1)填空:菱形ABCD的边长是________、面积是________、高BE的长是________;(2)探究下列问题:①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位,当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.-4-【例4】(辽宁省大连市试测(一))如图1,平移抛物线F1:y=x2后得到抛物线F2.已知抛物线F2经过抛物线F1的顶点M和点A(2,0),且对称轴与抛物线F1交于点B,设抛物线F2的顶点为N.(1)探究四边形ABMN的形状及面积(直接写出结论);(2)若将已知条件中的“抛物线F1:y=x2”改为“抛物线F1:y=ax2”(如图2),“点A(2,0)”改为“点A(m,0)”,其它条件不变,探究四边形ABMN的形状及其面积,并说明理由;(3)若将已知条件中的“抛物线F1:y=x2”改为“抛物线F1:y=ax2+c”(如图3),“点A(2,0)”改为“点A(m,c)”其它条件不变,求直线AB与y轴的交点C的坐标(直接写出结论).-5-【学力训练】1、(辽宁省大连市)如图1,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k·AE,AC=k·AD,点M是DE的中点,直线AM交直线BC于点N.(1)探究∠ANB与∠BAE的关系,并加以证明.说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一个作为已知条件,再完成你的证明,选取①比选原题少得2分,选取②比选原题少得5分.①如图2,k=1;②如图3,AB=AC.(2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并直接写出变化后∠ANB与∠BAE的关系.-6-2、(湖南省娄底市)如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3.(1)延长HF交AB于G,求△AHG的面积;(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2).探究1:在运动过程中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系式.-7-3、(辽宁省十二市、丹东市)已知:在平面直角坐标系中,抛物线y=ax2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=ab2)-8-4、(广东省茂名市)已知:如图,直线l:y=31x+b,经过点M(0,41),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1).(1)求b的值;(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示)(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
本文标题:2009年全国各地中考试题压轴题精选讲座八
链接地址:https://www.777doc.com/doc-3089843 .html